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सार — यह अध्ययन उन्नत अनसुंधान मौसम अनसुंधान और परू्ाानमुान (ARW) मॉडल की प्रारंभिक स्थिततयों को 

बेहतर बनाने में उपग्रह वर्ककरणों के आत्मसात से संबधंधत है और मॉनसून अर्साद (MDs) से जडु ेर्र्ाा और अन्य 
मौसम संबधंी वर्शेर्ताओ ंके भसमुलेशन पर इसका प्रिार् है। अध्ययन के भलए 2015-2018 के दौरान होने र्ाले आठ 
एमडी को ध्यान में रखा गया है। दो संख्यात्मक प्रयोगों का एक सेट: CNTL, बबना ककसी डेटा आत्मसात के, और 
SAT, जहां उपग्रह वर्ककरणों को मॉडल की प्रारंभिक स्थितत में आत्मसात ककया जाता है, प्रत्येक MD मामले के भलए 
आयोस्जत ककया जाता है। इस अध्ययन में, NOAA 15, NOAA 18, NOAA 19, EOS 2, METOP 1 और 
METOP 2 पर साउंडडगं इंथूमेंट्स एडर्ांथड माइक्रोरे्र् साउंडडगं यतूनट (AMSU), माइक्रोरे्र् साउंडडगं यतूनट (MHS), 
और एटमॉथफेररक इंफ्रारेड साउंडर (AIRS) से सैटेलाइट रेडडएशन डेटा का इथतेमाल ककया गया है। राष्ट्रीय मौसम वर्ज्ञान 
कें द्र (एनएमसी) पद्धतत का उपयोग करके जनू से अगथत 2017 के भलए गणना की गई क्षेत्र-वर्भशष्ट्ट पषृ्ट्ठिूभम त्रटुट 
सांस्ख्यकी का उपयोग करके यह समार्ेशन ककया गया है। 

 

समारे्शन के बाद एमडी के रैक में 12 घटें से 42 घटें तक सधुार देखा गया है, स्जसमें एसएटी रन के भलए 
न्यनूतम रैक त्रटुट 320 ककमी है, जबकक सीएनटीएल रन के भलए यह 400 ककमी है। मुख्यतः ऊपरी क्षोिमंडलीय थतरों 
पर पर्नों का अनकुरण, आत्मसातीकरण के काफी बाद ककया गया, जबकक तनचले थतर की पर्नों के भलए, 
आत्मसातीकरण लंबी दरूी के परू्ाानमुान (>24 घटें) के भलए वर्श्र्सनीय हैं। TRMM र्र्ाा और िारतीय मौसम वर्ज्ञान 
वर्िाग (IMD) थटेशन के पे्रक्षणों की तलुना में, CNTL रन की तलुना में, आत्मसातीकरण रन, र्र्ाण की तीव्रता और 
थिातनक प्रसार, दोनों को बेहतर ढंग से दशााते हैं। इसके अलार्ा, SAT रन में अनकुरण ककए गए अधधकतम र्र्ाण र्ाले 
क्षेत्रों का थिान और तीव्रता, CNTL रन की तुलना में TRMM आकँडों से बेहतर मेल खाते हैं। CNTL रन अधधकतम 
र्र्ाा की तीव्रता का 1.6 सेमी से 50.6 सेमी तक की त्रटुटयों के साि अधधक आकलन करते हैं, जबकक SAT रन -2.6 
सेमी से -19.1 सेमी तक की त्रटुटयों के साि तीव्रता का कम आकलन करते हैं। GPM आकँडों के साि तलुना करके 
पररकभलत सांस्ख्यकीय थकोर, जसेै परू्ााग्रह, क्रांततक सफलता सूचकांक (CSI), और संसूचन की संिार्ना (POD), िी 
CNTL रन की तुलना में आत्मसातीकरण रन के र्र्ाा परू्ाानमुान में सुधार को उजागर करते हैं। अध्ययन में लघ-ुदरूी 
र्र्ाा परू्ाानमुान में सधुार करने में उपग्रह वर्ककरण समारे्शन के महत्र् को प्रथततु ककया गया है। 

 

ABSTRACT. This study deals with the assimilation of satellite radiances in improving the initial conditions of the 

Advanced Research Weather Research and Forecasting (ARW) model and its impact on the simulation of rainfall and 
other meteorological features associated with Monsoon depressions (MDs). Eight MDs occurring during 2015-2018 are 

considered for the study. A set of two numerical experiments: CNTL, which does not consider any data assimilation, and 

SAT, where satellite radiances are assimilated into the model initial condition, is conducted for each MD case. In this 
study, satellite radiance data from the sounding instruments Advanced Microwave Sounding Unit (AMSU), Microwave 

Humidity Sounder (MHS), and Atmospheric Infrared Sounder (AIRS) on polar satellites NOAA 15, NOAA 18, NOAA 

19, EOS 2, METOP 1, and METOP 2 are used. The assimilation has been done using the region-specific background 
error statistics computed for June to August 2017 using the National Meteorological Centre (NMC) method. 
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Improvements in the tracks of MDs after assimilation are seen from 12h to 42h, with a minimum track error of 320 

km for SAT runs, in contrast to 400 km for CNTL runs. Winds, mainly at upper tropospheric levels, were simulated well 

after assimilation, while for lower-level winds, assimilation runs are reliable for a longer range forecast (>24h). The 
assimilation runs capture both the intensity and spatial spread of precipitation better than the CNTL runs, compared to 

TRMM precipitation as well as with India Meteorological Department (IMD) station observations. Also, the location and 

intensity of the maximum precipitation regions simulated in SAT runs are in better agreement with TRMM data than 
CNTL runs. CNTL runs overestimate the intensity of maximum precipitation with errors from 1.6 cm up to 50.6 cm, 

while SAT runs underestimate the intensity with errors from -2.6 cm to -19.1 cm. The statistical scores, such as bias, 

critical success index (CSI), and probability of detection (POD), computed by comparing with GPM data, also highlight 
the improvement in precipitation forecast of the assimilation runs compared to the CNTL runs. The study presents the 

significance of satellite radiance assimilation in improving the short-range rainfall prediction. 
 

Key words –  Satellite radiance, Assimilation, Monsoon depressions, Indian region. 

 

 

1. Introduction 

 

The Indian summer monsoon (ISM) or the South 

Asian Monsoon is the strongest monsoon system in the 

world. Nearly one-sixth of the world population is 

dependent on it for their survival. The variation in ISM 

not only impacts the food and water resources of a region 

but also plays a crucial role in shaping the overall 

economy (Gadgil and Gadgil, 2006). The duration of ISM 

is generally from June to October, with a sudden onset at 

the beginning of June and slow withdrawal at the end of 

September or at the beginning of October. The Indian 

Summer Monsoon Rainfall (ISMR) is the major source of 

water for the Indian region, so the monsoon season and its 

associated rainfall have a large socioeconomic impact on 

the region’s economy. Monsoon season contributes 70-

80% of the total annual rainfall of India (Gadgil and 

Gadgil, 2006). During monsoon season, there are different 

rain-bearing systems, including offshore troughs, which 

produce rainfall along the west coast, mid-tropospheric 

circulations, which produce rainfall along the west coast 

of India and the northwest parts of India, and monsoon 

depressions (MDs). MDs are synoptic-scale disturbances 

that form in the monsoon circulation during the southwest 

monsoon season of June to September (Sikka, 1977; 

Hurley and Boos, 2015). It is an important rain-producing 

system of the monsoon. It is associated with widespread 

(Godbole, 1977; Mooley and Shukla, 1989) and heavy 

rainfall (Ajayamohan et al., 2010) in parts of central and 

northwestern India. So, a better understanding of it is 

necessary to simulate it well. 

 

For short-range prediction, it is necessary to have 

accurate initial conditions, as the model performance is 

sensitive to perturbations in initial conditions. 

Improvements in initial conditions are possible with the 

incorporation and assimilation of high-resolution 

observations. Studies such as Routray et al. (2016) and 

Osuri et al. (2015) demonstrated that data assimilation 

provides better initial conditions to a numerical weather 

prediction (NWP) model. Most of the MDs form over the 

sea, a region where data availability is scarce. 

Observations from non-conventional sources such as 

satellites play a crucial role in providing information 

about the meteorological system. Studies such as Rakesh 

et al. (2010) have shown that the assimilation of satellite 

observations has improved model-predicted rainfall during 

the monsoon season. 

 

In this study, the Advanced Research Weather 

Research and Forecasting (ARW) modelling system is 

used. A detailed description of model physics, dynamical 

core, and model equations of the ARW modelling system 

is given in Skamarock et al. (2005). Barker et al. (2004) 

described the practical implementation of the 3DVAR 

system along with results from the initial case study and 

its real-time application. Earlier studies have considered 

coarser resolution (Routray et al., 2013), which performed 

better in the study of large-scale features of the monsoon. 

Further, the model showed relatively higher errors in the 

quantitative prediction of rainfall associated with different 

rain-bearing systems of the monsoon season. Considering 

the MDs and associated rainfall activity, the resolution 

needs to be finer to capture the sub-grid scale processes. 

In recent years, voluminous data have been available from 

different satellites over different parts of the globe. A 

comprehensive objective of this study is to assess the 

impact of satellite radiances as a whole on the simulation 

of MDs and associated rainfall activity.   

 

Section 2 describes an overview of experiments, 

data, and methodology. A brief description of the three-

dimensional variational assimilation system is given in 

section 2.1. Section 2.2 explains the background error 

calculation, and Section 2.3 lists the datasets used. Results 
and analysis are presented in Section 3. It is divided into two 

parts: Impact of satellite radiance on initial condition 

(Section 3.1) and Impact on model simulations (Section 3.2). 

Section 4 consists of the conclusions. 

 

2.  Data and methodology 

 

Eight MD cases that formed over the Bay of Bengal 

(BoB) in recent years (2014 – 2018) are considered.  The 

brief synoptic features associated with the events are 

discussed in Table 1. These cases are simulated using the  
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Fig. 1. The domain considered for the study and the tracks of MDs 
considered. The resolution of the domain is 4 km 

 
ARW model with a single domain with 4 km horizontal 

grid spacing and 51 sigma levels. The vertical levels are 

placed finer in the lower atmosphere up to 700 hPa, which 

becomes coarser in the upper atmosphere.The physical 

and microphysical parameterizations include the New 

Thompson scheme for microphysics, the Tiedtke scheme 

for cumulus parameterization, the Mellor-Yamada-Janjic 

scheme for the Planetary Boundary Layer (PBL), the 

RRTM radiation scheme, the Eta similarity for surface 

layer physics, and the Noah land surface model for land 

surface. The domain considered for study and the tracks of 

the studied MDs are shown in Fig. 1. The 0.25° × 0.25° 

grid Global Forecast System (GFS) analyses and forecast 

products of the National Centers for Environmental 

Prediction (NCEP) are used to prepare the model initial 

and lateral boundary conditions. The lateral boundary 

conditions are updated in a 6 h interval from the GFS 

forecast fields. 

 

A set of two numerical experiments is conducted.  

The first set, named CNTL, is carried out without any 

assimilation of satellite radiances. The second set of 

experiments (SAT) uses satellite radiance data to update 

the model's initial condition. Assimilation of radiance 

takes place over both land and sea. All the MD cases are 

initialized at different initial times for at least a                   

24 h forecast length; a total of 14 simulations are   

obtained. The list of the simulations, along with their 

forecast time, is given in Table 2. The simulations for 

different cases are performed with single or multiple 

initial conditions for a depression, depending on the 

lifetime of the depression. This is done to assess the 

influence of assimilation cycle timing on short-range 

forecasts and the performance of 3DVAR assimilation at 

different start times and forecast lengths in capturing 

variability in an evolving MD structure. 

Satellite radiance measurements are prone to error, 

which must be regularly corrected before assimilating 

radiance observations. The most common method is 

variational bias correction (VarBC) that performs bias 

correction (BC) as a part of the analysis, thereby 

considering information from observations and the full 

background field. Derber and Wu (1998) and Dee (2005) 

have given a detailed description of the VarBC method. 

 

2.1. Three-dimensional variational data 

assimilation (3DVAR) 

 

The 3DVAR assimilation system within the ARW 

model framework is used. The main principle of this 

method is to avoid the computation of a gain matrix (K) 

by taking analysis as an approximate solution to the 

minimization problem. This is done by defining a cost 

function J, and the primary aim is to minimize the cost 

function by performing several iterations. Cost function is 

the sum of squared deviations of analysis values from 

observation values weighted by the accuracy of the 

observation, plus the sum of squared deviations of forecast 

fields from analysed fields weighted by the accuracy of 

the forecast (Equation 1). This helps in maintaining the 

analysis close to the observations. The cost function (J) is 

represented by: 

 

𝐽(𝑋) = 𝐽𝑏 + 𝐽𝑜 =
1

2
(𝑥 − 𝑥𝑏)𝑇𝐵−1(𝑥 − 𝑥𝑏) +

1

2
(𝑦 − 𝑦𝑜)𝑇(𝐸 + 𝐹)−1(𝑦 − 𝑦𝑜)                              (1) 

 

where Jb and Jo are the background and observation cost 

functions, x is the state vector, xb is the first guess (or also 

known as background field), B is the background error 

covariance, y is the model state projected into 

observational space (y=Hx), H is the nonlinear forward 

operator, yo is the observation, E is the observational or 

instrumental error covariances, and F is the representative 

error covariances. 

 

The minimization can be stopped by limiting the 

number of iterations or when the gradient decreases to a 

predefined amount. This is a measure of how close the 

analysis is to the optimum from the initial point before 

minimization. Compared to other methods, the variational 

assimilation allows greater flexibility in assimilating 

different types of data. The main advantage of this method 

is to remove the local data selection as seen in optimum 

interpolation (OI) method (Eyre, 1987), and allows to 

perform a global analysis. So this method eliminates the 

problem of splitting the domain into subdomains so that 

all observations can influence analysis at every grid point 

of the study domain. It also provides a general framework 

for handling complex background-error covariance. The 

popularity of 3D-Var is due to its conceptual simplicity & 
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TABLE 1 

 

Synoptic Features of Monsoon depressions considered in the study  

 

Sl.No. MD PERIOD SYNOPTIC FEATURES 

1 20-22 June 2015 Genesis of the depression is on 20th June 2015 at 03 UTC northwest and adjoining west central BoB near 
18.0° N/86.0° E Crossed Odisha coast between Gopalpur and Puri around 20-21 UTC on 20th June 

Estimated central lowest pressure is 990 hPa and maximum wind speed is 25 knots at 03 UTC of 20th 

June near 18.0° N/86.0° E 

2 04-05 August 2015 Genesis of the depression is on 04th August 2015 at 03 UTC over East Madhya Pradesh and adjoining 

Chhattisgarh near 22.7° N/80.5° E Weakened into a well-marked low pressure area over southwest 
Madhya Pradesh and neighbourhood at 00 UTC on 5th Aug. Estimated central lowest pressure is 998 hPa 

and maximum wind speed is 25 knots at 03 UTC on 4th Aug. A remnant of cyclonic storm ‘KOMEN’ 

which developed as a well- marked low and then strengthened into a depression at 03 UTC of 4th Aug. It 

moved westward and weakened into a well-marked low pressure area around 00 UTC of 5th Aug. 

3 06–07 July 2016 Genesis of the depression on 6th July 2016, 03 UTC over north Madhya Pradesh and neighbourhood near 

24.8° N/81.5° E Weakened in to a well-marked low pressure area over northeast Madhya Pradesh and 

neighbourhood at 03 UTC on 7th July Estimated central lowest pressure is 996 hPa and maximum wind 

speed is 25 knots at 03 UTC of 6th July near 24.8° N/81.5° E It caused heavy to very heavy rainfall over 

Madhya Pradesh and adjoining areas of Maharashtra. 

4 18–19 July 2017 Genesis of the depression on 18th July, 2017, 00 UTC over northwest and adjoining westcentral BoB and 
coastal areas of Odisha near 19.0° N/86.0 °E Weakened into a well-marked low pressure area over 

interior Odisha and neighbourhood at 03 UTC on 19th July Estimated central lowest pressure is 992 hPa 

and maximum wind speed is 25 knots at 00 UTC of 18th July near 19.0° N/86.0° E It moved west-
northwestwards and crossed Odisha coast near Puri around 20:30 hours IST on 18th July and continued to 

move in the same direction and weakened gradually 

5 26–27 July 2017 Originated over Jharkhand and neighbourhood centered near 24.0° N/85.0° E at 00 UTC on 26th July 

2017 Depression weakened into a well-marked low pressure area over northeast Madhya Pradesh and 
neighbourhood at 03 UTC of 27th July Estimated central lowest pressure is 993 hPa and maximum wind 

speed is 25 knots at 00 UTC on 26th July Active monsoon condition across central part of the country 

with intense rainfall activity over this region. 

6 21–23 July 2018 Genesis of the depression on 21st July 2018, 03 UTC over northwest BoB near 21.0° N/88.0° E 

Weakened into a well-marked low pressure area over northwest Jharkhand and neighbourhood at 03 

UTC 23rd July Estimated central lowest pressure is 989 hPa near 21.0° N/88.0° E with maximum wind 

speed of 25 knots at 03 UTC 21st July It had a straight moving track and a life period of 48 hours. 

7 07–08 Aug 2018 Genesis of the depression on 7th August 2018, 09 UTC over northwest BoB near 21.5° N/87.5° E 

Depression weakened into a well-marked low pressure area over north Chattisgarh and neighbourhood at 

03 UTC of 8th August Estimated central lowest pressure is 992 hPa and maximum wind speed is 25 knots 

at 09 UTC 7th August near 21.5° N/87.5° E 

8 15–17 Aug 2018 Genesis of the depression on 15th Aug 2018, 03 UTC over coastal Odisha near 20.0°N/86.0°E Weakened 
into a well-marked low pressure area over southwest Madhya Pradesh and adjoining Gujarat & north 

Madhya Maharashtra Estimated central lowest pressure is 993 hPa and maximum wind speed is 25 knots 

at 03 UTC 15th Aug near 20.0° N/86.0° E 

        (Source: IMD RSMC Reports) 

 
TABLE 2 

 

Simulations and their forecast length 

 

Simulation number Initial condition Forecast length(h) 

1 15.08.2018 : 00 UTC 48 

2 15.08.2018 : 12 UTC 36 

3 16.08.2018 : 00 UTC 24 

4 07.08.2018 : 00 UTC 24 

5 21.07.2018 : 00 UTC 48 

6 21.07.2018 : 12 UTC 36 

7 22.07.2018 : 00 UTC 24 

8 26.07.2017 : 00 UTC 24 

9 18.07.2017 : 00 UTC 24 

10 06.07.2016 : 00 UTC 24 

11 04.08.2015 : 00 UTC 24 

12 20.06.2015 : 00 UTC 48 

13 20.06.2015 : 12 UTC 36 

14 21.06.2015 : 00 UTC 24 
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TABLE 3 

 

Assimilated satellite data for each case 

 

Simulation Noaa 15 Amsua Noaa 18 Amsua Noaa 18 Mhs Noaa 19 Mhs Eos 2 Airs Metop 1 Mhs Metop 2 Mhs Metop 2 Amsua 
1 * * * * *    
2 * * * *  *   
3 * * * *     
4 * * * *     
5 * * * *     
6 * * * *     
7 * * * *     
8 * * * *     
9 * * * * *    

10 * * * * *    
11 * * * *   *  
12 * * * *     
13 * * *    * * 
14 * * * *     

 

 

the way complex observation operators are used. In OI, 

we need to specify the background error covariance model 

between each observed and model variable, which makes 

this method complicated (Parrish & Derber, 1992; 

Courtier et al., 1998). 

 

In 3DVAR, observations make local, isotropic 

increments without proper flow-dependent extrapolation 

and the background error covariances do not automatically 

adjust with observation networks. So, the results from this 

data assimilation method are dependent on the number 

and types of observations assimilated (Kutty & Wang, 

2015). 

 

2.2. Background error calculation 

 

Background error statistics (BES) play an important 

role in spreading the observations spatially and filtering 

analysis increments based on dynamical balances and 

statistical relationships (Courtier et al., 1998). In 

observation-sparse regions, especially over oceans, the 

background field provides a more realistic analysis as the 

model includes the physics and dynamic processes. 

Simple interpolation of observations might produce 

erroneous results as the interpolation efficiency decreases 

with distance, and the physics and dynamics are also not 

taken into consideration. 

 

In this study, we have used the National 

Meteorological Centre (NMC) method for calculating the 

Background Error covariances (BEC). The NMC method 

(Parrish and Derber, 1992) approximates the BES using 

the difference of two model forecasts having different 

initial times but are valid at the same time. This gives 

insight into the numerical model itself. This method uses a 

control variable transform (CVT) that converts the model 

variables into control variables of the assimilation system. 

BEC used in this study is calculated for the domain shown 

in Fig. 1 using the region-specific CV5 option. 12 and 24-

hour forecasts were generated from June 2017 to August 

2017 at 00 UTC and 12 UTC. Perturbations were 

calculated between the 12 and 24-hour forecasts valid at 

the same time. The average of the perturbations is 

calculated to generate the BEC for the monsoon season. 

Routray et al. (2014) showed that the use of regional BES 

in the assimilation cycle has a positive impact on the 

prediction of location, propagation, and development of 

rainbands associated with MDs. Initial conditions also 

improved through assimilation of observations and using 

domain-dependent BES.  

 

2.3. Datasets used 

 

NCEP Global Forecast System (GFS) with a 0.25° × 

0.25° global latitude longitude grid is used to provide the 

boundary conditions for the model run. Model forecast 

runs are done at 00, 06, 12, and 18 UTC daily. The grids 

include analysis and forecast time steps at a 3-hourly run 

from 0 to 240 hours and at a 12-hourly interval from 240 

to 384 hours.  NCEP Global Data Assimilation System 

(GDAS) datasets contain subsets of level 1b or higher 

satellite data products that can be used in NCEP GDAS 

systems. They have a lot of applications, especially in 

areas where conventional observations are scarce. The 

datasets assimilated in the simulations of each case are 

given in Table 3. Here, blank entries under a specific 

platform indicate unavailability of satellite overpasses 

within the assimilation window or exclusion due to quality 

control (QC) threshold rejections (e.g., high cloud 

contamination, limb effects).  

 

Satellite radiance data from the sounding instruments 

Advanced Microwave Sounding Unit (AMSU), 

Microwave Humidity Sounder (MHS), and Atmospheric 

Infrared Sounder (AIRS) on polar satellites NOAA 15, 

NOAA 18, NOAA 19, EOS 2, METOP 1, and METOP 2 

are used. A higher number of AMSU observations are 

assimilated as compared to other satellite radiances. The 

simulation of surface-sensitive channels of AMSU 

observations may be affected by the inaccurate  
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Figs. 2. (a-h);(a-d) Background field departure of BT for the different satellite radiances assimilated in simulation 11; (e-h) 

Analysis departure of BT for different satellite radiances assimilated in the same simulation. The quantity in the bracket 

represents the number of observations assimilated 

 

representation of skin temperature and surface emissivity 

(Karbou et al., 2006). These quantities are derived from 

the background information. Accurate representation of 

background information plays an important role in 

determining the impact of AMSU observations, and this 

effect is generally more prominent in the northern 

hemisphere (NH), which has a higher land surface 

coverage. 

 

Tropical Rainfall Measuring Mission (TRMM) 3-

hourly and daily datasets are used to compare with the 

model rainfall. TRMM 3B42 is a fine-scale (0.25° × 0.25° 

and 3-hourly) satellite-determined precipitation dataset 

accessible in the latitude band 50°S – 50°N. The TRMM 

3B42 precipitation-related passive microwave data are 

mainly collected by a series of satellites in low Earth orbit, 

while the infrared data are gathered in a window channel 

(∼10.7 μm) by an international constellation of 

Geosynchronous Earth Orbit (GEO) satellites. Half-hourly 

Integrated Multi-satellitE Retrievals for Global 

Precipitation Measurement (IMERG) (Huffman et al., 

2014) datasets are used to compare the skill metrics of 

precipitation estimates. These Global Precipitation 

Measurement (GPM) L3 “Final” products are computed at 

0.1° × 0.1° resolution using data from precipitation-

measuring satellites and other data, including monthly 

surface precipitation gauge analyses. 

 

Other meteorological fields simulated by the models 

are compared with the fifth generation European Centre 

for Medium-Range Weather Forecasts (ECMWF) 

reanalysis (ERA5) datasets with a spatial resolution of 

0.25° × 0.25° (Hersbach et al., 2020). The data is used for 

comparison with model outputs such as mean sea level 

pressure, winds, vertical profiles of temperature, and 

specific humidity. The best track data for the IMD 

Regional Specialised Meteorological Centre (RSMC) is 

used to track MDs.  

 

3. Results and discussions 

 

The impact of assimilating satellite radiances on MD 

simulations is discussed in this section. Simulations 

numbered 11, 12 of cases 1 and 2 are used to show the 

individual impacts on assimilating satellite radiances. 

Impact of assimilation on initial conditions, 10-m winds, 

winds at different pressure levels, track predictions, 

vertical profiles, and distribution of model-simulated 

rainfall are also analyzed. 

 

3.1. Impact of satellite radiance on initial condition 

 

Figs. 2(a-d) represents the background field 

departure (difference between model brightness 

temperature (BT) before assimilation with the observed 

BT) for different satellite radiances assimilated in run 11. 

Figs. 2(e-g) represents the assimilated field departure 

(difference between model BT after assimilation with the 

observed BT) for different satellite radiances assimilated 

in the same simulation. The negative values indicate that 

the background or analysis fields show a greater value of 

BT compared to observations. Background field 

departures are higher mainly over regions of central India 

and the BoB, and the boundaries of the domain (for MHS 
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assimilation). The background field departures have been 

considerably reduced after assimilation of satellite 

radiances. Major improvements can be seen over central 

India and the eastern BoB. The error range has 

considerably reduced, and it ranges between -2 and +2 

after assimilation. 
 

A scatter plot is plotted between observed BT after 

BC with background (Fig. 3a) and analysis BT (Fig. 3b) 

with the colours representing different types of radiance 

data assimilated. Correlation coefficient and RMSE values 

are given in Table 4. There is a substantial improvement 

in all the correlation coefficients, particularly of NOAA 

MHS-18, 19, followed by METOP 2 MHS after 

assimilation. RMSE values are also significantly reduced 

after assimilation. The maximum reduction in RMSE 

value is seen for NOAA MHS 18 from 13.82 to 0.26, 

followed by NOAA MHS 19 from 9.15 to 0.21. These 

significant improvements are due to the assimilation of 

high-quality radiance channels, particularly in 

temperature- and humidity-sensitive bands over the 

depression’s location. 
 

Vertical profiles of wind speed, temperature, and 

specific humidity are shown in Fig. 4. Vertical profiles are 

calculated for a 2º × 2º box from the centre of the MD. 

Fig. 4(a-c) represents the profiles for simulation 11 

(04.08.2015 00 UTC). Fig. 4(d-f) represents the vertical 

profiles for simulation 12 (20.06.2015 00 UTC). The 

profiles of the SAT runs show an overall better agreement 

with the profiles of ERA5 for both cases, in general. 

Major improvements can be seen in the simulation of 

temperature and specific humidity profiles of SAT runs, 

i.e., closer to the observation profile in the boundary layer 

(below 700 hPa). This suggests that the SAT runs 

represent the cold core of MDs well and simulate a 

relatively moister atmosphere, approximately till mid-

troposphere, closer to ERA5 profiles. Whereas, the CNTL 

runs simulate a relatively drier atmosphere. 
 

Figs. 5(a-c) represents the mean bias for vertical 

profiles of wind speed, temperature, and specific 

humidity, respectively. As shown in Fig. 5(a), the biases 

of the CNTL and SAT runs for wind speeds are similar. 

However, for temperature and specific humidity, it is 

observed that the bias for SAT runs is lower than that for 

CNTL runs till mid-troposphere. While at higher levels, 

i.e., 400-500 hPa and above, the biases for both 

experiments are nearly equal. There has been a significant 

improvement in profiles of temperature and moisture, 

especially in layers between 500 hPa and 1000 hPa.  
 

3.2. Impact on model simulations 
 

Model simulated tracks for simulations 1, 9, 11 and 

12 are shown in Figs. 6(a-d). IMD best track data is also 

shown for reference. SAT runs give a better prediction of 

MD tracks. The positional error for 3DVAR runs is less 

for the reference cases shown. SAT runs are also able to 

capture the north-northwestward movement of MDs. The 

variation of mean track error with forecast length for both 

experiments shows that initially, for a forecast length of 

up to 9 hours, CNTL runs produce better simulations of 

MD tracks (Fig. 6e). However, as the forecast length 

increases, there is a considerable reduction in mean track 

errors of SAT runs than CNTL runs, with values ~500, 

480, 420 and 700 km for the SAT runs and ~650, 580, 520 

and 650 km for CNTL runs at 12h, 24h, 36 h & 48h 

respectively. The minimum track error obtained in SAT 

runs is 320 km, in contrast to 400 km for CNTL runs at 

42h. The intensity in terms of maximum wind speed at 10 

m shows that SAT runs have overall higher prediction 

skill than CNTL runs throughout the simulation length 

(Fig. 7).  

 

Fig. 8 shows the 12-hour forecast of wind speeds at 

850 hPa [Figs. 8(a-c)], 500hPa [Figs. 8(d-f)], and 10 m 

[Figs. 8(g-i)] for simulation 11. The CNTL and SAT runs 

are compared with the ERA5 reanalysis dataset. At 850 

hPa [Figs. 8(a-c)], the model runs are predicting the 

circulation patterns well; however, the intensity, mainly in 

the southern sectors, is underestimated, mainly in the SAT 

run compared to the reanalysis data. The strong winds on 

the south-western sector at 500 hPa are highly 

underestimated in both runs. The circulations at 500 hPa 

and 10 m are slightly better defined in SAT runs. There is 

an improvement in the circulation pattern at 10m, which is 

scattered for the CNTL run, but slightly better defined in 

the SAT run. An important feature during MD 

intensification is the presence of strong lower tropospheric 

westerlies at 850-900 hPa (Krishnamurty and Bhalme, 

1976). This feature was simulated well in both model 

runs.  

 
The mean RMSE of wind speed at 850 hPa and 500 

hPa of the simulations is plotted in Fig. 9 as a function of 

forecast length. For lower-level winds (Fig. 9a), 

assimilation runs are reliable for a longer range forecast 

(>24h) due to their lower RMSE values. Initially, for a 

forecast length up to 24h, CNTL runs show lower RMSE 

values and are more reliable, which is also seen in the 

circulation patterns at 12h (Fig. 8a). RMSE values for 

upper-level winds (500hPa) are shown in Fig. 9(b). For 

the entire forecast range, assimilation runs are more 

reliable and have lower RMSE values than CNTL runs, 

which matches the results of the circulation patterns at 12h 

(Fig. 8b). Hence, large impacts of assimilating satellite 

radiances can be noticed in upper tropospheric levels as 

compared to the lower levels. The result obtained is 

consistent with the studies Zapotocny et al. (2008) and 

Kutty  and  Wang  (2015). In this study channels 5 to 9 for 
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Figs. 3(a&b). Scatter plot between the observational BT and model BT before and after assimilation 

 

 

 

 
 

Figs. 4(a-f); (a-c) Vertical Profiles of wind speed, temperature, and specific humidity on 04.08.2015 00 UTC (I.C. of simulation 11); (d-f) 

Vertical Profiles of wind speed, temperature, and specific humidity on 20.06.2015 00 UTC (I.C. of simulation 12) 
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Figs. 5(a-c) Mean bias (CNTL Run– OBS and SAT- OBS) for vertical profiles of (a) wind speed, (b) temperature, and (c) specific humidity 

 

 
 

Figs. 6(a-e): (a-d) Forecasted track for CNTL and 3DVAR runs along with IMD best track data for 

simulations 1, 9, 11 and 12, (e) Time series of mean track error 
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Fig.  7(a). Time series of RMSE of maximum wind speed at 10m as a function of forecast length. Different lines represent CNTL and 
SAT runs 

 

 

 
 

Figs. 8(a-i). Represent 12 hour forecast of winds at (a-c) 850hPa, (d-f) 500hPa, and (g-i) 10m for case 11 (IC: 04.08.2015: 00 UTC) for ERA5, 

CNTL, and SAT runs, respectively 
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Figs. 9(a&b). Mean RMSE of wind speeds at (a) 850hPa and (b) 500hPa as a function of forecast length 
 

 

 
 

Figs. 10(a-c). Total precipitation on 04.08.2015 (Simulation 11) in mm from TRMM data. The red line represents the track of the 

depression. Difference between: (b) CNTL and TRMM precipitation, and (c) SAT and TRMM precipitation, respectively, in mm 

 

AMSU-A and channels 3 to 5 for MHS are assimilated for 

temperature and moisture fields. So, the poor performance 

of assimilation runs in the lower troposphere may be 

attributed to the fact that the channels that detect the 

meteorological fields in the lower troposphere are not 

assimilated.  

 

Model-simulated 24h rainfall from CNTL and SAT 

experiments is compared with the TRMM captured 

rainfall for simulation 11 (Fig. 10). Rainfall obtained from 

TRMM data is shown in Fig. 10(a). Figs. 10(b&c) show 

the difference between TRMM rainfall analysis and model 

values in mm. Positive values indicate model runs 

simulate a higher precipitation intensity, while negative 

values indicate underestimation by model runs. The 

CNTL run (Fig. 10b) overestimates the intensity of 

precipitation, with an error range between 350 mm and -

200 mm. While the SAT run (Fig. 10c) slightly 

underestimates the intensity of precipitation, with values 

ranging between 50 mm and -50 mm. The spatial spread 

of rainfall, however, is captured in the SAT run better than 

in the CNTL run. Thus, the assimilation run captures  both 

the intensity and spread of rainfall better than the CNTL 

run.       

Table 5 compares CNTL and SAT simulated rainfall 

at different stations with IMD observed rainfall values for 

case 11 on 04.08.2015. Both runs underestimate the 

precipitation intensity. The underestimation, in general, is 

higher for control runs than SAT runs, except at 

Chindwara, where CNTL overestimates precipitation than 

observations. CNTL's unrealistically strong convection 

that led to the overestimated rainfall is adjusted by 

3DVAR assimilated moisture fields, leading to closer 

agreement in spatial distribution but a slight 

underestimation in magnitude. The values simulated by 

assimilation runs are, however, closer to the observed 

values. The location and intensity of maximum 

precipitation from TRMM rainfall data are given in Table 

6 for all depression cases. In  addition,  location  error  and 
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TABLE 4 

 

Correlation values and RMSE of background and analysis BT against observation BT values 

 

RADIANCE 
ASSIMILATED 

BACKGROUND 

 

ANALYSIS 

 

CORRELATION RMSE CORRELATION RMSE 

NOAA AMSUA 15 0.93 2.67 1.00 0.03 

NOAA AMSUA 18 0.91 3.49 1.00 0.04 

NOAA MHS 18 0.29 13.82 0.98 0.26 

NOAA MHS 19 0.19 9.15 0.97 0.21 

METOP 2 MHS 0.63 0.99 1.00 0 

 

TABLE 5 

 

Comparison of CNTL and 3DVAR simulated precipitation with IMD observed rainfall at different stations on 04.08.15 

 

STATION DATE LATITUDE LONGITUDE IMD RAINFALL (cm) CNTL RUN (cm) 3DVAR RUN (cm) 

Amarwara 04.08.2015 22.29° 79.16° 15 4.09 4.43 

Seoni - AWS 04.08.2015 22.08° 79.54° 12 4.12 3.99 

Chindwara 04.08.2015 22.05° 78.93° 12 14.12 9.85 

Keolari 04.08.2015 22.37° 79.9° 11 1.88 2.34 

Katangi 04.08.2015 21.77° 79.8° 11 3.65 7.37 

Lakhnadon 04.08.2015 22.6° 79.6° 10 4.08 5.83 

Bemetara 04.08.2015 21.71° 81.53° 12 0.49 1.99 

Raigarh 04.08.2015 21.89° 83.39° 7 0.69 0.8 

 

magnitude error of maximum precipitation for CNTL and 

SAT runs for all cases are also included in the table. It is 

evident that for most cases, the location error and 

magnitude error of maximum rainfall are less for the SAT 

run. For all the cases, CNTL runs overestimate the 

intensity of maximum precipitation while SAT runs 

underestimate the intensity, but it is much closer to the 

TRMM value. However, the improved location error but 

with an underestimated magnitude implies that 

assimilation improves storm positioning by accurately 

representing low- and mid-level wind fields, which 

directly influences rainfall location, but intense 

precipitation cores remain underpredicted, possibly due to 

conservative moisture adjustments by the 3DVAR 

assimilation system or smoothing effects inherent to it. 

The assimilation of observations has helped improve the 

accuracy of capturing the location and magnitude of 

maximum precipitation. While all assimilated channels 

show improvement, AMSUA and MHS water vapor 

channels contribute most to rainfall forecast improvement 

due to their sensitivity to tropospheric moisture, which is 

crucial for MD dynamics.   

  

Fig. 11 shows the mean absolute error of 

precipitation for different stations when the model values 

are compared with observed IMD rainfall values, with 

error values divided into different intervals. The error is 

divided into different intervals, and the error intervals are 

represented using different colours. A total of 105   

stations were considered. The distribution of stations              

in different error intervals for the CNTL and SAT runs             

is given in Table 7. In assimilation runs, a higher 

percentage of stations are in the error range of 0-8 mm, 

and there is a significant decrease in the percentage of 

stations as the error range increases. In the case of CNTL, 

the error range of 8-15mm has a higher number of 

stations. Comparing both runs, it is evident that 

assimilation runs have higher stations in a lower error 

range, while in CNTL runs, more stations can be found in 

a higher error range, indicating that the assimilation of 

satellite radiances has resulted in a significant decrease in 

error values. 

 

Model precipitation data is compared with Global 

Precipitation Measurement (GPM) half-hourly data to 

calculate skill metrics such as bias, critical success index 

(CSI), and POD (probability of detection). The skill scores 

are calculated using the contingency matrix, taking into 

consideration whether a forecast occurs or not (Wilks, 

2011). CSI estimates how well an event is forecasted. The 

BIAS score calculates the ratio of the number of forecast 

events to the number of observed events, giving an idea of 

whether the model is over-predicting or under-predicting. 

A BIAS score of 1 means the model values are in  

agreement with observed values. POD gives the fraction 

of rainfall events that are correctly forecast. 
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Figs. 11(a&b). Mean absolute error of precipitation for different stations when compared to IMD rainfall for CNTL and 3DVAR/SAT runs, 

respectively 
 

 
 

Figs. 12(a-o). Mean precipitation skill scores POD, CSI, BIAS for rainfall thresholds 0-20 mm (a-c), 20-40 mm (d-f), 40-60 mm (g-i), 60-80 

mm  (j-l), 80-100 mm (m-o), respectively 
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TABLE 6 

 

Location and Intensity of maximum precipitation obtained from TRMM rainfall data, along with the location error and  

magnitude error of maximum precipitation for CNTL and 3DVAR runs for all depression cases 

 

CASES TRMM CNTL 3DVAR 

 Location of  

maximum rainfall 

Magnitude error of 
maximum rainfall (cm) 

Location error of 

maximum rainfall 
(km) 

Magnitude error of 

maximum rainfall 
(cm) 

Location error of 

maximum rainfall 
(km) 

Magnitude error of 

maximum rainfall 
(cm) 

1 17.87° N  85.87° E 20.5 548 17 158 -6.3 

2 18.62° N  79.87° E 21.3 180 12.9 460 -6.4 

3 18.62° N  79.87° E 21.3 362 18.1 172 -9.6 

4 19.62° N  87.37° E 17.7 439 11.9 327 -10.3 

8 22.87° N  85.12° E 18.1 783 3.8 379 -6.6 

9 18.12° N  84.12° E 20.5 253 16.1 300 -3.3 

10 23.87° N  78.12° E 29.4 305 12.3 260 -19.1 

11 21.87° N  80.37° E 20.4 204 50.6 199 -5 

12 17.12° N  84.12° E 32.8 101 1.6 373 -7.8 

13 17.87° N  84.62° E 18 299 49 433 -2.6 

14 17.87° N  84.62° E 18 371 45 302 -4.4 

 
TABLE 7 

 

 Distribution of stations in different error intervals 

 

 Number of stations in the model runs with different error range 

Rainfall error range CNTL RUN 3DVAR 

0-2 mm 4 2 

2-4 mm 3 7 

4-6 mm 9 14 

6-8 mm 29 42 

8-10 mm 29 17 

10-15 mm 23 20 

15-20 mm 7 3 

20-30 mm 1 0 

 

 

Fig. 12 represents the mean precipitation skill scores 

for different rainfall thresholds. Figs. 12(a-c), (d-f), (g-i), 

(j-l), and (m-o) represent the mean skill scores for the 

intervals 0-20 mm, 20-40 mm, 40-60 mm, 60-80 mm, and 

80-100 mm, respectively. SAT runs show a slightly higher 

bias value compared to the CNTL runs, indicating 

overestimation. The bias is higher for higher thresholds of 

rainfall, indicating that SAT runs overestimates 

precipitation for higher thresholds. SAT runs have higher 

bias values for initial forecast (< 24h), and the bias values 

approach 1 for longer forecast durations. Initially, CNTL 

runs show bias values close to 1, but it tends to 

underestimate as the forecast length increases. Except for 

the threshold of 0-20 mm, CSI scores for SAT runs are 

higher than those of CNTL runs. So, assimilation runs 

show a better skill in forecasting an event. POD values for 

CNTL runs are mostly less than those for SAT runs. 

Higher frequency of events simulated by assimilation runs 

matches the forecast. For most cases, SAT runs show 

better results after 12 to 24 hours of forecast time. This 

may indicate that the assimilated data may first affect the 

outer regions of the domain before it reaches the centre of 

the MD. This is consistent with results from Chou and 

Huang (2011). The statistical scores show that SAT runs 

have higher efficiency in simulating the observed rainfall 

than CNTL runs. 

 

5. Conclusions 

 

This study aims to understand the improvements in 

the model initial conditions achieved through the 

assimilation of satellite radiances and the consequent 

impact on the simulation of rainfall and other 

meteorological features associated with MDs. Eight MD 

cases that occurred during 2015-2018 are considered for 

this study. 
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To assess the impact of satellite radiance 

assimilation on initial conditions, the background field 

departure of BT (O-B) is compared with the analysis field 

departure of BT (O-A). The values of O-A are much less 

than the background field departure. RMSE and 

correlation coefficients calculated for model BT compared 

to observation show that SAT runs have higher correlation 

values and lower RMSE values. There is also considerable 

improvement in simulating vertical profiles of temperature 

and specific humidity, especially in layers between              

500 hPa and 1000 hPa. Values of mean bias for             

vertical profiles showed a considerable reduction                 

after assimilation. This suggests that the initial            

conditions of the model improved after the assimilation of 

satellite radiances. However, no improvement is seen in 

the biases of windspeeds of SAT runs compared to CNTL 

runs. 

 

The track simulated by assimilation runs matches 

reasonably well with the IMD best track. SAT runs have 

slightly higher track error for initial forecast lengths of 0-9 

hours, but as the forecast length increases, there is a 

considerable reduction in track error. SAT runs are also 

able to simulate the north-northwestward movement of 

MDs. The results indicate assimilation of radiances has a 

positive impact on track prediction. Improvements have 

been made in wind simulations mainly at upper 

tropospheric levels, after assimilation. While for lower-

level winds, assimilation runs are reliable for a longer 

range forecast (>24h). For the entire forecast range, 

assimilation runs are more reliable and have lower RMSE 

values than CNTL runs at higher levels. 

 

3DVAR simulated intensity and spatial distribution 

of precipitation are in better agreement with              

TRMM rainfall analysis as well as with IMD station 

observations. SAT runs were able to capture the                

location and intensity of maximum precipitation                  

more accurately than CNTL runs. A statistically 

significant improvement in spatial mean rainfall 

prediction skill is seen in the number of stations clustered 

into different error bins, which shows that SAT runs 

reduced the number of stations in a higher rainfall error 

range (8-15 mm) to a lower error range (≤ 8 mm). Model 

forecast of precipitation is verified using various skill 

metrics like BIAS, CSI, and POD with different 

thresholds. For higher rainfall thresholds, 3DVAR runs 

have a higher value of CSI, higher BIAS, and higher POD. 

The statistical scores also stress that the precipitation 

forecast has improved in assimilation runs compared to 

CNTL runs. 

 

This study thus shows that the assimilation of non-

conventional data, like satellite radiance, leads to 

significant improvements in simulating features associated 

with MDs from a better representation of cold core to 

wind structure, track, and position and intensity of 

associated rainfall. Future direction in this area includes 

the incorporation of high-resolution land surface data 

assimilation. Land surface assimilation is important for 

MDs as they spend most of their time on land. So the 

characteristics of the land surface play an important role in 

the evolution of MDs. Also, studies with advanced 

assimilation techniques like 4DVAR, along with 

incorporating flow-dependent background error 

covariances, will help in validating the results.  
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Satellite radiance data, TRMM 3B42, GPM L3 Final 

products, and ECMWF ERA5 data are available online 
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fc.nasa.gov/, https://pmm.nasa.gov/data-access/downloads 
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estimates. The Best Track data are obtained from the IMD 

Regional Specialised Meteorological Centre (RSMC). 
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