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lkj & bl 'kks/k i= esa vle cekZ dh igkfM+;ksa ¼,ch,p½ ds Åij ls cgus okyh yh osc ds 
m/oZokg@v|ksizokg ds ekSfyd cgko dks vkn’kZ :i  esa izLrqr djus ds fy, ,d mixkeh fu"d"kZ izkIr djus 
dk iz;kl fd;k x;k gS tgk¡ LFkf;Ro vkSj iou dk ekSfyd cgko Å¡pkbZ ds lkFk fu’pj jgrs gSaA vle–cekZ 
igkfM+;ksa ds lfUudV nks f=vk;keh nh?kZo`Urkdkj jksf/kdkvksa ds }kjk ig¡pk x;k gS tks dqN fuf’pr nwjh ij 
,d ?kkVh }kjk foyx gSA bldks lgtrk ls le>us ds fy, iou ds ekSfyd cgko dks jksf/kdkvksa ds cM+s&cM+s 
fdukjksa ds yacor ,d vo;o ekuk x;k gSA blds fy, xofuZax lehdj.k esa {kksHk rduhd dks ykxw fd;k x;k 
gSA {kksHk mnxz osx ¼ ½ vkSj ok;q izokgh js[kk dh nwjh ¼w   ½ dks f}’k% lekdyksa esa n’kkZ;k x;k gS ftls 
mixkeh foLrkj ds :i esa le>us dk iz;kl fd;k x;k gSA blls izkIr ifj.kke lqlaxr ik, x, gS vkSj bldh 
rqyuk iwoZorhZ vUos"k.k dRrkZvksa }kjk izkIr fd, x, ifj.kkeksa ls dh xbZ gSA  

 
ABSTRACT. An attempt has been made to obtain an asymptotic solution for the updraft/downdraft associated 

with Lee wave across the Assam-Burma hills (ABH) for an idealized basic flow, where, both stability and wind in the 
basic flow remain invariant with height. ABH has been approximated by two three dimensional elliptical barriers, 
separated by a valley of some finite distance. For simplicity, the basic flow has been assumed to have only one 
component normal to the major ridges of the barriers. For this purpose, perturbation technique has been applied to the 
governing equations. The perturbation vertical velocity ( w ) and streamline displacement ( ) are expressed as double 

integrals, which have been attempted to approximate as an asymptotic expansion. The results obtained are found to be 
consistent and have been compared with the results obtained by earlier investigators.  
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1.  Introduction 
 

The problem of airflow over an orographic barrier 
and in particular, the formation of stationary atmospheric 
Lee waves has received considerable theoretical attention 
in the past. In a stably stratified atmosphere a fluid parcel, 
displaced vertically, undergoes buoyancy oscillation 
which gives rise to gravity waves. Now, these gravity 
waves can propagate vertically to a great distance carrying 
energy and momentum to higher levels in the atmosphere. 
Sometimes, they are associated with the formation of 
Clear Air Turbulence (CAT). The information about 
standing waves, which under favorable meteorological 
conditions form on the Lee side of the mountain barrier, is 
very important for the safety of aviation. Many aircraft 
accidents reported in mountainous areas are often 
attributed to the vertical velocities of large magnitude 
associated with the Lee waves.  

Studies on the perturbation to a stably stratified air 
stream by an obstacle can be broadly divided into two 
categories. In one category the obstacle is assumed to 
have an infinite extension in the crosswind direction, so 
that the flow is essentially two-dimensional (2-D). In the 
other category the obstacle is assumed to have a finite 
extension in the crosswind direction and consequently the 
flow is three-dimensional (3-D). One fundamental 
difference between the 2-D and 3-D approach is the 
direction of propagation of wave energy away from the 
mountain. In two dimensions as the mountain becomes 
wider and the flow more nearly hydrostatic, the group 
velocity (relative to the mountain) becomes directed 
vertically with the result that the wave energy is found 
directly above the mountain.  This result does not carry 
over to three dimensions.  Some of the hydrostatically 
waves generated by 3-D mountain lie down stream of the 
mountain and to the side tending to form trailing wedges 
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of vertical motion. Thus for practical and theoretical 
reasons, it is necessary to understand the three-
dimensional mountain flow problem. 

 
 
Wurtele (1957) represented the 3-D orographic 

barrier in the form of semi-infinite plateau of height ‘h’ 
with narrow width ‘2b’ in the crosswind direction. He 
considered the incoming wind (U) and buoyancy 
frequency (N) to be independent of height. His theory 
predicted the region of updraft, which had a horseshoe 
shape, and was located some distance downstream of the 
barrier. Crapper (1959) presented a 3-D small perturbation 
approach of waves produced in a stably stratified air 
stream flowing over a mountain. He obtained the 
fundamental solution for a doublet disturbance in an air 
stream in which Scorers parameter remains constant and 
then it was extended to that for a disturbance caused by a 
circular mountain in the same air-stream. He showed that 
circular mountain can give rise to waves which have 
greater amplitude than those produced by an infinite ridge 
in the same air-stream. Crapper (1962) considered the 
airflow across a 3-D barrier with elliptical contour for two 
types of air-stream. In one case the Scorer parameter l was 
constant with height, in other case it was assumed to fall 
off exponentially with height. In each of the above cases 

2
2

21
q

dz

Ud

U
  was kept constant. The result showed that 

when l is constant, then the form of the waves was 
determined by the value of q. He also showed that when l 
falls off exponentially, the waves closely resembled ship 
waves for any value of q.  

 
Sawyar (1962) studied gravity waves in the 

atmosphere as a 3-D problem. He derived an equation, for 
the vertical variation of the amplitude of the standing 
waves, when the wind varied with height and the wave 
was periodic in the horizontal. He solved the equation 
numerically for specified two or three layer atmosphere to 
determine possible wavelengths in the horizontal 
directions for Lee waves. He obtained results for the cases 
when wind direction changed with height as well as for 
the cases when wind direction remained same in the 
vertical. He showed interestingly that Scorer’s (1949) 
condition for the occurrence of Lee wave was no longer 
applicable for wave motion in 3-D. He showed that in          
3-D Lee waves are always possible in a two-layer 
atmosphere. Onishi (1969) solved 3-D linearized 
equations for arbitrary upstream conditions by including 
friction in the governing equations. Pekelis (1971) 
extended his 2-D work to solve linearized 3-D problem. 
Vertical velocity fields obtained by him compare well 
with those of Sawyar (1962). Smith (1980) examined the 
stratified hydrostatic flow over a bell shaped 3-D isolated 
mountain using linear theory. Solutions for various parts 

of the flow field were obtained using analytical method 
and numerical Fourier analysis. The flow aloft was found 
to be composed of vertically propagating mountain waves. 
The maximum amplitude of these waves occurred directly 
over the mountain, but there was considerable wave 
energy, trailing downstream along the parabolas 

U

Nzax
y 2 ; where U, N are respectively the constant 

basic zonal wind and buoyancy frequency.  Bluemen and 
Dietze (1981) considered a 3-D linear hydrostatic model 
of stationary mountain wave in a stably stratified air-
stream. They took both the incoming flow and Burnt-
Vaisalla frequency to be independent of height, but lateral 
variation of incoming flow was incorporated by assuming 
a hyperbolic secant profile ( ). The results in 

their solution for different shape of hill showed that the 
pressure pattern and the velocity at the ground level were 
similar in many respects to the field obtained by Smith 
(1980) for constant basic flow. The incoming air-stream 
tends to circumvent the hill resulting in a permanent 
streamline deflection. Somieski (1981) studied the 
stratified hydrostatic flow over a three dimensional 
circular mountain. He derived a 2nd order wave equation 
from the primitive equation including constant rotation 
and vertical wind shear of the mean flow. He solved the 
equation numerically. He showed that in case of no shear 
and constant static stability, the nodal lines are parabolic 
for a circular mountain of diameter 50 km.  Bluemen and 
Dietze (1982) extended their earlier model by including 
the vertical variation of the basic flow and static stability. 
To take into account the vertical structure of basic state, 
they introduced stretched vertical co-ordinate. The energy 
flux computed by them was compared with the results of 
Elliassen and Palm (1961). Olafssen and Bougeault (1996) 
explored the hydrostatic flow over an elliptical mountain 
barrier of aspect ratio 5. They took upstream profiles of 
wind (U), stability (N) constant and ignored the effect of 
Coriolis force.  Under such conditions their result showed 
the flow characteristics to be dependent mainly on the 

non-dimensional mountain height

SechyU

U

Nh
.  They found that 

for all values of
U

Nh
, a substantial part of the flow was 

diverted vertically above the mountain. They found 
generation of potential vorticity in the wake of the 
mountain, leading to the creation of Lee vortices.  

 
In India the problem of mountain waves has been 

studied by Das (1964), Sarker (1965, 1966, 1967), De 
(1971), Sinha Ray (1988), Tyagi & Madan (1989) and 
Kumar et al. (1995), Dutta (2003, 2005, 2007a, 2007b), 
Dutta et al., (2002), Dutta et al. (2006), Dutta & Naresh 
Kumar (2005), etc. Among all, Das (1964) first addressed 
the issue from a 3-D aspects. He studied the influence of 
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the Himalayas, approximated as a large 3-D circular 
mountain, using a linear baroclinic model which included 
the variation of ‘f’ with latitude. The solutions were 
obtained for the downstream waves in an asymptotic form. 
It was shown that the wave distortion depends on a non-
dimensional parameter, which is a combination of Froude 

number 






gd
U 2

, Rossby number 






fL
U  and the static 

stability 
1 dθ

θ d
l

z
 
 


 . Considering the center of the 

circular mountain at 85° E and 30°-40° N, the major 
trough line was found between 105°-110° E, which is in 
reasonable agreement with the observations over eastern 
Tibet in winter. Afterwards 3-D study on mountain wave  
and its different aspects were studied by Dutta et al., 
(2002) and subsequently by Dutta (2003), Dutta et al.         
(2006) and Dutta (2005, 2007a, 2007b). These studies 
addressed the Lee waves across the Western Ghats and the 
Khasi-Jayantia hills only. In India problems on Lee waves 
across the Assam-Burma hills was first addressed by De 
(1970) and subsequently by De (1971),  Farooqui and De 
(1974), Dutta and Naresh Kumar (2005) etc. De 
(1970,1971) computed the wavelength of the Lee waves 
over the Assam-Burma hills using an approach, similar to 
Sarker (1966, 1967) with necessary modification for the 
mountain profile and wind direction in that region. 
Computed wavelength varies between 17 and 34 km and 
agreed well with those observed from satellite pictures. 
Farooqui and De (1974) used a two dimensional model to 
calculate the flow over a small obstacle (half width 2 km), 
a large obstacle (half width of 20 km) and across the 
Assam hills (200-300 km). Their results in the later 
experiment show long waves of length (20-40 km) and 
other large perturbations mainly between heights 1 and 9 
km.  From 9 to 15 km perturbations are very small. 
However, these studies on Lee waves across the Assam-
Burma hills are of 2-D.  

 

Similar to Dutta et al. (2002), in the present study 
also,  an adiabatic, steady state, non-rotating and laminar 
flow of a vertically unbounded stratified and  Bossiness 
fluid across a 3D mesoscale orographic barrier, has been 
considered. Present study is similar to the study of Dutta 
et al. (2002) in most of the aspects, except the lower 
boundary condition. In  Dutta et al. (2002) lower 
boundary was a 3-D elliptical barrier whereas in the 
present study the barrier is approximated analytically by 
two 3-D elliptical barriers, separated by a valley, Similar 
to Dutta et al. (2002), in the present study also it is 
assumed that the basic flow (U) is normal to the major 
ridges of elliptical barriers and it is constant with height 
and the buoyancy frequency (N) is also assumed to be 
constant with height and  a rectangular co-ordinate system 
in which, x axis points towards east, y axis towards north 
and z axis vertically upward is considered. Using the 
technique followed by Dutta et al. (2002), we obtain the 
following vertical structure equations for perturbation 
vertical velocity 

 
This study aims at developing a 3-D mesoscale Lee 

wave model for the Assam-Burma hills (ABH) and at 
obtaining an analytical solution for the updraft and 
vertical displacement associated with 3-D mesoscale Lee 
waves across ABH, following an asymptotic 
approximation.  

 
2.  Data 
 

Input data for the proposed model consists of 
geopotential height, pressure, dry bulb temperature and 
horizontal components of wind at different levels at a 
station far upstream of the barrier. As the ABH is north 
south oriented, hence when it is approximated analytically 
by two 3-D elliptical barriers, separated by a valley, the 
major ridges become north south oriented. Hence the 

zonal component of the basic flow only interacts 
effectively with the ABH to give rise to Lee waves. The 
only station on the upstream side is Guwahati (26.19° N 
Latitude and 91.73° E Longitude). Hence the RS/RW data 
of Guwahati for those dates, which corresponds to the 
observed Lee waves across ABH, as reported by De 
(1970, 1971) and Farooqui and De (1974), has been 
obtained from Archive of India Meteorological 
Department, Pune.  
 
3.  Methodology 

 

)(w  and for perturbation vertical 

streamline displacement )(  :  
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Where 11 ˆ,ˆ,ˆ,ˆ ww

1

 are double Fourier transforms of 

1 ,,,   ww  respectively, 

 
    )(,,,, 1 zczyxwzyxw 

                                     (3)                         
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Where  
 

0

0

ρ (0)
( )

ρ ( )
c z

z
                                                        (6)  

 
and  0ρ z  is the basic state density at the level z. 

 
Since the last two terms in the brackets in equations 

(1) & (2) are very small in magnitude, hence they can be 
neglected, so that these equations are simplified and 
written as 

 

0ˆ
ˆ

1
2

2
1

2





wm
z

w

                                                    
(7) 

 
and 

 

0ˆ
ˆ

1
2

2
1

2



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m
z                                                     

(8) 

respectively. 
 
 
For vertically propagating wave, the solutions of (7) 

and (8) can be taken as 
 

    imzelkwzlkw 0,,ˆ,,ˆ1  1
           

                                        (9) 

and                  
 

    imzelkzlk 0,,ˆ,,ˆ 11                                           (10)  

respectively. 
 
 

Now at the lower boundary i.e., at surface, the 
airflow follows the contour of the mountain, the profile of 
which is given by 

 

 
2

2

2

2
2

2

2

2

2
1

)(
11

,

b

y

a

dx

h

b

y

a

x

h
yxh


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
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


                                 
(11) 

          

 
Where a = 20 km, b = 50 km, d = 55 km, h1 = 0.9km,            

h2 = 0.7 km.  
 
Now the double Fourier transform of (11) is given by 
 

     









 yxeyxhlkh lykxi dd,,ˆ  

  




   2222

0212 lbkaKehhab ikd              (12) 

 

where 




  2222

0 lbkaK  is the Bessel function of 

second kind of order zero. Details of the derivation are 
given in Appendix I. 

 
Thus at the ground surface,            

     yxhyxyx ,0,,0,,1   

 
Hence, 
 

      




   2222
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(13) 
 
Now the linearized lower boundary condition for 1w  

is given by  
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Hence, 
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Therefore, 

        

  imzikd elbkaKehhabzlk 




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and, 
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
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
   2222

0211 )(2,,ˆ 
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Hence, streamline displacement and perturbation 

vertical velocity at any point ( zyx ,, ) are given by 
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If 
N

U
 is taken as the unit of length, then the 

integrands in Eqns. (18) and (19) may be rendered non-
dimensional by the following substitution: 
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With the above substitution Eqns. (18) and (19) 

reduces to 12
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The double integrals I1 and I2 

are difficult to evaluate 
analytically. So they are responsible to the method of 

stationary phase. According to this method, first those 
points in the wave number  domain are found out, 

where the phase 

 lk,

 mzlykx   is stationary. Those points 

are termed as saddle points. Then the entire integrand is 
expanded in Taylor’s series about the saddle point and the 
first term of the expansion is retained as the asymptotic 
approximation of the integrals, which is valid at far down 
wind location of the mountain. The asymptotic expansion 
for   is given by 
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   zyx ,,1
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Details of the above derivation are given in 

Appendix 2. 
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 [ taken from Dutta   

et al., (2002)] 
 
 

R  is the specific gas constant of the atmosphere 
and  is the lapse rate of the basic state and 

. 2 2X 2 2 2 2,R Y Z Y Z      2

 
 
Similarly, the asymptotic expansion for perturbation 

vertical velocity w  is given by 
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(a) (b) 

 

      

(c) (d) 

  
 

Figs. 1(a-d).  Downstream variation of wʹ in the central plane at (a) 1.5 km level for ABH, (b) 3 km level for ABH, (c) 6 km level for ABH and 
(d) 10 km level for ABH 

 
  
 
 

 
4.  Results and discussions  where, 
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Now from (23) it is clear that at z = 0, i.e., at the 
surface w   vanishes except at x = 0, y = 0. This should be 
so for Lee wave. The geometrical description of wave 
pattern in 3-D is obtained by substituting y = 0. At y = 0, 
w   is given by: 
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Details of the above derivation are given in 

Appendix 2. (25)  
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Figs. 2(a-d).  Downstream variation of nʹ in the central plane at (a) 1.5 km level for ABH, (b) 3 km level for ABH, (c) 6 km level for ABH and  

(d) 10 km level for ABH 

 
 
 
 

 
From this expression it follows that at any level, 

perturbation vertical velocity decays downstream of the 
barrier in the central plane, This may be attributed to the 

presence of the Bessel function and the term 

 2
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. 

Figs. 1(a-d) show the downstream variation of wʹ in the 
central plane at 1.5 km, 3.0 km, 6.0 km and at 10.0 km 
above mean sea level, which approximately resemble to 
850 hPa, 700 hPa, 500 hPa and 300 hPa respectively. 
Each of them shows downstream decay in the amplitude 
of in the central plane.  w
 
 

Similarly at y = 0, '  is given by from (22) 
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which appears to decay downstream of the barrier in 

the central plane due presence of the Bessel function and 

the term  22 zx

x


. Figs. 2(a-d) show the downstream 
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variation of '  in the central plane at 1.5 km, 3.0 km,         

6.0 km and at 10.0 km above mean sea level, which 
approximately resemble to 850 hPa, 700 hPa, 500 hPa and 
300 hPa respectively. Each of them shows downstream 
decay in the amplitude of '

 in the central plane.  

 
The nodal lines (on any horizontal plan z = z0) of  the  

respective field at any  level corresponds to maximum or 
minimum values of the field. This corresponds to 
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    Now for the ABH 1
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So, we neglect the last term  from  (27)  and we get       
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Where m = 0, ±1, ±2, ±3,……      

 
From Eqn. (28) we get,  
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Either,    
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 system of  hyperbola, system of  ellipse and 
system  parabola. 

hic barrier, mentioned above, for the Lee 
wave ases. 

 20 km,            
b = 5 , d = 55 km, h  = 0.9 km, h2 = 0.7 km. 

., Bessel function of second kind of 

order zero and 

spo
 

In the study of Das (1964), nodal  lines were 
concentric circles, which may be attributed to the 
geostrophic approximation made by him and the larger 
scale circular taken by him. In the study of Smith (1980) 
and Someiski (1981), were taking hydrostatic 
approximation, obtain parabolic shaped nodal lines for 
small Gaussian hill circular contour and the diameter of 
the circular obstacle is 50 km respectively. In the present 
study neither geostrophic nor hydrostatic approximation 
are made and furthermore, instead of a circular mountain 
we have taken a meso-scale elliptical barrier. Hence in 
this case we have two nodal lines, the first nodal lines are 
a system of hyperbola, which is in conformity with the 
earlier findings o Wurtele (1957) and also for the 
different values of m , we get  the nodal lines as system 
of  circle,

 
Now the above analytical result are verified for a 

typical Lee wave case across the Assam-Burma hills along 
east coast of India. De (1973) investigated that the air 
stream characteristic across Assam-Burma hills during 
winter was favorable for the occurrence of Lee waves. 
Using above equations both wʹ and ηʹ are computed for 
this orograp

 c
 
For the Assam-Burma hills we take a =
0 km 1

   
 
Now for the typical case in the Assam-Burma hills 

the vertically averaged basic wind speed (U) is 10m/s and 
vertically averaged value of Brunt-Vaisalla frequency (N) 
for the basic flow is 0.01/s. It is seen that both w' and η' 
decay downstream of the barrier at all levels in the central 
plane. These results are also in conformity with the earlier 
findings of Wurtele (1957) and Lyra (1943). The train of 
oscillations in the downstream variation of w' and η' in the 
central plane may be attributed to the product of the 

 

damping factors viz
2
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x z
to the product of the two 

damping factors viz., Bessel function of second kind of 

order zero and  
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x z respectively. 
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Figs. 3 (a-d). The contour of wʹ at (a) 1.5 km, (b) 3 km, (c) 6 km and (d) 10 km level 
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Figs. 4 (a-d). The contour of nʹ at (a) 1.5 km, (b) 3 km, (c) 6 km and (d) 10 km level 
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The contours of wʹ and ηʹ computed using 
asymptotic method at 1.5 km, 3 km, 6 km, 10 km for ABH 
are shown in Figs.  3(a-d) and Figs. 4(a-d) respectively. 
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Appendix 1 
 

The Fourier Transform of the function  
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Putting  x = aX, y = bY for the first term and x – d = aX, y = bY for the 2nd term 
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  for the both terms and we get the following 
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Putting X = r cos θ, Y = r sin θ and kʹ = K cos α, l = K sin α we get 
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Now  [taken from Dutta et al., (2002)]   
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Where J0(x) and K0(x) are Bessel function of 1st and 2nd kind of order zero respectively. 
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Hence,       1 2 0, 2 ikdh k l ab h h e K K  
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Now  2 2 2 2 2K k a l b                   
 
Therefore, 
 

     2 2 2 2
1 2 0, 2 ikdh k l ab h h e K k a l b   


  

 
 

Appendix 2 
 
Now to evaluate  the integral I1 and I2 we follow the method of approximations of double integrals of functions of large 

numbers as given by Hsu (1948). In the theorem of this paper, he has shown that if    , , ,x y h x y  and    ,, h x yf x y e   

be continuous functions defined on a region S such that  
 
 

(i)    , , ,
n

x y f x y    is absolutely  integrable  over S for n = 0, 1, 2.............. 

 
2 2

2
, , ,

2

f f f f

x yx y

   
  

 exist and continuous over S. (ii)

   
  

(iii) h(x, y) has an absolute maximum value at an interior pt (x0, y0) such that  
 

 At  
22 2 2

0 0 2 2
, , 0,

h h h h h
x y

x y x yx y

     
           

0  

(iv)

  

 ,x y is continuous at (x0, y0) and  0 0,x y 0 . Now if C be an analytic curve passing through the point (x0, y0), 

such that the region S is divided into two sub regions S1 and S2. Then the integral    , ,
n

x y f x y ds      taken over 

either of S1 and S2 is asymptotic to  
 

   

 0 0

0 0 0 0

22 2 2

2 2

,

, ,
n

n

x y

x y f x y

h h h

x yx y

   
              

 

 
Now  to evaluate I1 the following transformations 
 

cosθ, sinθ and sinX r Y r      are made. 

 

Here τ runs from 0 to ∞, and θ runs from  to
2 2

 
 . So that I1 transformed  

 

  2 2cos
cos sec2 2 2 2 2

1 1 2 0
0 2

cos sin
dN

i r Z d di
U N

I h h e K a b e
U

         


  

       


           
   
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Now evaluate the above integral by Hsu's theorem we get   
 

    2 2, cos sech i r z            
 

 

 
cos

2 2 2 2
1 2 0, c

dN
i

U N
h h e K a b

U

 

os sin      
           

 

                      

   ,he  ,f     here   n = 1 
 

Clearly ϕ, h, f  satisfy all the conditions stated in Hsu's theorem. 
  

Also 0
h







 

and 0
h







gives 

 
4 2 2

03

xz X Y

R


 




  (say) 

 

1
02

tan
XY 


  
    

 
(say) 

                                       

Where        2 2 ,Y Z   2 2 2 2 2R X Y Z  
 

Now  
 

22 2 2
2

2 2 4 2 2
1 4 0

h h h XYZR
R

X Y   

      
                



  

Now    
4 2 2

2 4 2 2 2
03 3

dNXZ
i

URXZ X Y XZN
e K a b X Y

R RU



 

            
0 0 1 2, h h      

By Hsu's theorem we get from (20) 
 

   

 

0 0 0 0
1

22 2 2

0 02 2

, ,

,

n

n

f
I

h h h

    

 
  

  
              

 here  n = 1 

 

i.e.,  
 

 

4 2 2
2 4 2 2 2

1 2 03 3

1
2

2
4 2 2

1 4

dNXZ
i

UR
ZR

i

XZ X Y XZN
h h e K a b X Y

R RU
I e

XYZR
R

X Y






 

 



            
         
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From (18) we get  
 

 

4 2 2
2 4 2 2 2

1 2 03 3
2

1 2 2
2

4 2 2

' , , Re
2

1 4

dNXZ
i

UR
ZR

i

XZ X Y XZN
h h e K a b X Y

R RUabN
X Y Z e

U
XYZR

R
X Y






 

 







                

      
     

 

 
 
i.e., 
 

 
1

24 2 2 2 4 2 2 2
0

XZN
X Y K a b X Y 

 
     

 
32

1 1 22 2 3 2

4 2 2

' , , cos cos
2

1 4

RUabN XZ ZR ZR NXZd
X Y Z h h

URR U
XYZR

X Y




  



                            

 

 
 
Similarly it can be shown that from (21) 
 

4 3

2 2 4 2 2 2 4 2 2 2
1 2 0 3

2
2

4 2 2
1 4

dNXZ
i

UR

R

XZN
i X Z X Y h h e K a b X Y

RU
I

XYZR

X Y





  




            
 

    

 

 
Now from (19) we get  
 

 
4 3

2 2 4 2 2 2 4 2 2 2
1 2 0 3

3

1 3 2

4 2 2

' , , Re
2

1 4

dNXZ
i

UR
ZR

i

R

XZN
i X Z X Y h h e K a b X Y

RUabUN
w X Y Z e

U XYZR

X Y







  






               
 

       

 

              
i.e., 
 
 

 
 

1
24 2 2 2 4 2 2 2

0 33 2 2

1 1 22 4 3 2

4 2 2

' , , sin sin
2

1 4

XZN
X Y K a b X Y

RUabN X Z ZR ZR NXZd
w X Y Z h h

URU R XYZR

X Y

 


 





     

 

                          

 

 
 


