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lkj & bl 'kks/k i= esa fu"izHkkoh vkSj vfLFkj fLFkfr;ksa esa ØkWliou lekdfyr lkanz.k ysus ds fy, nks 
fn’kkvksa esa vfHkogu folj.k lehdj.k ¼ADE½ dks gy fd;k x;k gSA ykIykl :ikarj.k rduhd dk mi;ksx 
rFkk m/okZ/kj Å¡pkbZ ij vk/kkfjr iou xfr vkSj Hkaoj folj.k’khyrk dh leh{kk djrs gq, ;g gy fudkyk 
x;k gSA blds lkFk gh Hkw&Lrj  vkSj vf/kdre lkanz.kksa dk Hkh vkdyu fd;k x;k gSA geus bl ekWMy esa 
iwokZuqekfur vkSj izsf{kr lkanz.k vk¡dM+ksa ds e/; rqyuk djus ds fy, dksiugsxu ¼MsuekdZ½ ls fy, x, 
vkuqHkfod vk¡dM+ksa dk mi;ksx fd;k gSA 

 
ABSTRACT. The advection diffusion equation (ADE) is solved in two directions to obtain the crosswind 

integrated concentration in neutral and unstable conditions. The solution is solved using Laplace transformation technique 
and considering the wind speed and eddy diffusivity depending on the vertical height. Also the ground level and 
maximum concentrations are estimated. We use in this model empirical data from Copenhagen (Denmark) to compare 
between predicted and observed concentration data.  
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1.  Introduction 
 

The analytical solution of the atmospheric diffusion 
equation contains different shapes depending on Gaussian 
and non- Gaussian solutions. An analytical solution with 
power law for wind and eddy diffusivity with the realistic 
assumption was studied by (Demuth, 1978). The solution 
has been implemented in the KAPPA-G model (Zannetti, 
1986; Tirabassi et al., 1986). (Lin and Hildemann, 1997) 
extended the solution of (Demuth, 1978) under boundary 
conditions suitable for dry deposition at the ground. The 
mathematics of atmospheric dispersion modeling is 
studied by (John, 2011). In the analytical solutions of the 
diffusion-advection equation, assuming constant along the 
whole planetary boundary layer (PBL) or following a 
power law was studied by (Van Ulden and Hotslag, 1978; 
Pasquill and Smith, 1983; Seinfeld, 1986; Tirabassi et al., 
1986; Sharan et al., 1996).   
 

Estimation of crosswind integrated Gaussian and 
non-Gaussian concentration through different dispersion 
schemes is studied by (Essa and Fouad, 2011). Analytical 
solution of diffusion equation in two dimensions using 
two forms of eddy diffusivities is studied by Essa et al.  
(2011). 

In this paper the advection diffusion equation (ADE) 
is solved in two directions to obtain crosswind integrated 
ground level concentration in neutral and unstable 
conditions. Laplace transformation technique is used 
considering the variation of wind speed and eddy 
diffusivity with height. Also the maximum ground level 
concentration is estimated. Observed data from 
Copenhagen (Denmark) and predicted concentration data 
using statistical technique is compared.   
    
2. Analytical solution 
 
        Time dependent advection – diffusion equation is 
written as (Arya, 1995). 
 

C C C C C
u k k kx y zt x x x y y z z

                

           

                         

(1)                    
where, 

 
x is along wind coordinate measured in wind 

direction from the source (m). 
 
y is the crosswind coordinate direction (m). 

 (655) 
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z is vertical coordinate measured from the         
ground (m). 

 
C (x, y, z) is the mean concentration of diffusing 

substance at a point (x, y, z) (µg/m3). 
 
kx, ky and kz are the eddy diffusivity coefficients 

along x, y and z respectively (m2/s). 
       

For steady state, taking dc/dt = 0 and neglecting  
diffusion in the x-axis direction because it is small with 
respect to the advection in the same direction, then Eqn. 1 
becomes as follows : 

 

C C
u k ky z

C

x y y z z

    
 

    

   
     

                                                               

(2)                                                                                             
 

Integrating Eqn. (2) with respect to y, we obtain the 
normalized crosswind integrated concentration                   
Cy (x, z) of contaminant at a point (x, z) of the atmospheric 
advection-diffusion equation in the form (Essa et al., 
2006): 

 
2

2
( )

y y y z
C C C k

u z k z
x z zz

   
 

 

   
      

                                                       

(3) 
 

The above equation is solved in neutral and unstable 
stabilities using two different schemes for the eddy 
diffusivity as follows:   

 
A. In neutral case  

 
Taking k (z) = kv w* z                                              (4) 

 
where kv is the von-Karman constant and w* is the 

scale vertical velocity. 
 

Substituting from equation (4) in equation (3), we 
obtain that: 

              
2

2( ) ( )
y yC Cv v

x z

k w z k w

u z u z

  
 

 
 


yC

z







                                                         

(5)   
 

Applying the Laplace transform on Eqn. 5 with 
respect to x, we obtain that:  

 

   , , ;y p yc s z L c x z x s     

   , 0p y y
C

L s C s z C
x

     
 , z                               (6) 

 
where Lp is the operator of the Laplace transform    
Substituting from Eqn. 6 in Eqn. 5, we get that:  
 

   
 

 

2

2
v *

v *

, ,1
,

k

0,
k

y y
y

y

C s z C s z u s
C s z

z z w zz
u

C z
w z

 
 



 

 


                               

(7)                    
 

Equation (3) is subjected to the following boundary 
condition 
 
(a) The flux at ground and top of the mixing layer can 
be given by:   

 

0
y

z
C

k
z





 at  z = 0, h                                           (i)                         

 
(b) The mass continuity is written in the form: 
   

u (z) Cy(x, z) = Q δ (z-hs) at x = 0                            (ii)                        
 

where δ is Dirac delta function, Q is the source 
strength and hs  is the stack height. 
 
(c) The concentration of the pollutant tends to zero at 
large distance of the source, i.e.,  
 

Cy (x, z) = 0     at x, z→ ∞                                      (iii)                         
 
Substituted from (ii) in equation (7) we obtain that: 
                                        

   
 

 

2

2
v *

v *

, ,1
,

k

k

y y
y

s

C s z C s z u s
C s z

z z w zz
Q

z h
w z



 
 



  

 


                            

(8) 
 

Integrated Eqn. (8) with respect to z, we obtain that: 
 

 
 

v *

v *

, ln( )
,

k

k

y
y

s

C s z u s z
C s z

z w

Q

w h






 




                                 

(9) 
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Equation (9) is non-homogeneous differential 
equation then, this equation has got two solutions, one is 
homogeneous and other is special solution. In order to 

solve the homogeneous equation, we putt 
v *k s

Q

w h


= 0 in 

equation 9, then the solution becomes: 
 

 
v *k

1
,

s u In z
z

y wC s z
c e

Q

 
 



                                        (10) 

                                                                                                                                                                                                                  
After taking Laplace transform in equation (10) and 

substituting from (ii), we obtain that:  
 

1
1 sc z

u s
  h                                                  (11) 

 
Substituting from equation (11) in equation (10) we 

obtain that :       
 

   
v *k,

su In z
z

y wsC s z z h
e

Q us


 
 
 




   

 
v *k, 1

s
s

s u In h
h

y wC s z
e

Q us

 
 
 


                               (12)                           

                 
The special solution of equation (9), is in the form as 

follows:  
 

         

 

 
v * v *

v *
v *

ln( )
,

k k

, 1

ln ( )
k

k

y
s

y

s

u s z Q
C s z

z w w h

C s z

Q u s z
w h D

w

 
    

  
 

 
 



                                                            

(13) 
   

where, D= 
z




 

 
Then solution of equation (13) is in the form as 

follows: 
                       

 
 

v

ln ln

k, 1

ln

u h h z z
s

y w

s

C s z
e

Q u s h h


 
  
 

 
 

 
 
 


                                              

(14) 

The general solution of equation (13) is given by 
summing two solutions equations (14) and (12) in the 
form: 

 
 

 
v *

ln

k, 1
s

s
s u h

h
y wC s z

e
Q us

 
 
 


 

                

 
v *

ln ln

k1

ln

u h h z z
s

w

s
e

u s h h

 
  
 

 
 

  
 
 

 

 (15)  
 
 

Taking Laplace inverse on Eqn. (15), we get that : 
    
 

 
 

 
    

v

v

, 1

ln

k

1

ln ln
ln

k

y

s s

s

C x z

Q uh h
u x

w

u h h z z
u h h x

w






 
 

 


           
  

                       

(16)  
 

Since, 
 

     

   

1 1 1 1

1 1

1
, 1,

1 1
exp and exp

L AB L A L B L
s

L a s L a s
x a x

   

 

   
 

         a 

  

 
 
L-1 is the operator of the inverse Laplace transform 

by (Shamus, 1980). To calculate the integrated ground 
level concentration, we put z = 0 in Eqn. (16), we get that: 

 
 

 
 

 
  

v

v

, 0 1

ln

k

1

ln
ln

k

y

s s

s

C x

Q u h h
u x

w

u h h
u h h x

w






 

 
 


        
  

                

(17) 
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Differentiating Eqn. (17) with respect to x and 
equating the result to zero, we get the maximum 
downwind distance in the form : 

 
 

     

 
max

v *

ln ln

k 1 ln

s s

s

u h h h h h
x

w h h

   
  

             (18) 

  
 

Substituting from Eqn. (18) in Eqn. (17), we get the 
maximum crosswind integrated ground level 
concentration as follows:-  
   

 

     
  

 

,m a x

1 / 2

1 / 2
v

v

0

1

ln ( ) ln ln

kk 1 ln

s s s s

s

C x

Q

u h h h h h u h h
u

ww h h






 
     


         



          

 
       

   
  

1 / 2

1 / 2
v

v

1

ln ln
ln

k 1 ln

ln

k

s s

s

u h h h h h
u h hs

w h h

u h h

w








       
    

   


 

(19) 
  

B. In unstable case  
 
In unstable case we take the value of the vertical 

eddy diffusivity in the form: 
              

k (z) = kv w* z   (1-z / h)                                         (20) 
 
 
Substituting from equation (20) in equation (3), we 

get that: 
   

2

2

v v
2

k 1 k 1

( ) ( )
y yC C yC

x zz

z z
w z w

h h
u z u z

  


 

   
        


 

 





                                           

(21)         

  

                                                            
 
Applying the Laplace transform on Eqn. (21) with 

respect to x and considering that:  
 

   ˆ , , ;y p yc s z L c x z x s     

  , 0p y y
C

L sC s z C
x

     
 , z                                (22) 

    
where Lp is the operator of the Laplace transform    

 

Substituting from Eqn. (22) in Eqn. (21), we obtain 
that: 

  

   
 

 

2

2 2 2

v *

2

v *

2
1, ,

,

k

0,

k

y y
y

y

z
C s z C s z ush

C s z
zz z z

z w z
h h

u
C z

z
w z

h

     
   

       
   


 
  

 

 


                   

(23)                        
 

Substituting from (ii) in Eqn. 23 we get:
                                             

   

 
 

2

2 2

2 2

v * v *

2
1

, ,

,

k k

y y

s
y

z
C s z C s zh

zz z
z

h

Q z hus
C s z

z z
w z w z

h h



 






 

 

  
 
 
 
 

   
   
   

 


             

(24) 
 

After integrating equation (24) with respect to z, we 
obtain that:  

 
 

v *

v *

ln,
,

k

k 1

y
y

s
s

z h
usC s z z

C s z
z w

Q
h

w h
h







 
  
 




                                           

(25) 
 
Eqn. (25) is non-homogeneous differential equation 

then, above equation has got two solutions, one is 
homogeneous and other is special solution, in order to 

solve the homogeneous, we put, 

v *k 1 s
s

Q
h

w h
h


  
 

 = 0 in 

Eqn. (25), the solution becomes: 
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  v *k
,

z h
su In

z
z

w
y

z
C s z

c e
Q

 
 
 
 
 







                           (26)  

 
After taking Laplace transform in equation (26) and 

substitute from (ii), we obtain that:  
 

1
zc z

u s
  sh                                                 (27) 

  
Substituting from equation (27) in equation (26) we 

get that:                   
 

 
v *

ln

k
, 1

s

s

h h
s u

h
z

w

yC s z
e

Q u s

 
 
   
  
 


                                                                

(28)                                                                                                                              
 

The special solution of equation (25) becomes: 
 

 

  v *

ln

k

v

, 1

k 1

z h
s u

z
z

w
y

s
s

C s z
e

hQ
w h

h

 

 
 
 
 




  
 






                                 (29)    
 

Then, the general solution of eqn. (25) is as follows: 
 

 
v *

v *

ln

k

ln

k

v

, 1

1

k 1

s

s

h h
su

h
z

w

y

z h
su

z
z

w

s
s

C s z
e

Q u s

e
h

w h
h

 
 
  
  
 

 
 
 
 
 
 






  
 




        

(30) 

Taking Laplace inverse of equation (30), we get  
that: 
 
 

 

v

v
v

, 1

ln

k

1

ln
k 1

k

y

s

s

s
s

C x z

Q h h
u

h
u x

w

z h
u

h z
w h x

h w







 
 
  
  



 
       
 
 





                        

(31) 
 
Since: 

 

     

   

1 1 1 1

1 1

1
, 1,

1 1
exp and exp

L AB L A L B L
s

L a s L a s
x a x

   

 

   
 

         a 

 

 
 

L-1 is the operator of the Laplace inverse transform 
by (Shamus, 1980). 
 
 

To get the crosswind integrated ground level 
concentration, we put z = 0 in Eqn. 31, we get that: 

 
 

 

v

v

,0 1 1

k 1ln

k

y

ss
s

s

C x

hQ h h w h xu
hh

u x
w





 
         
  
 



                                                     (32) 
 
Differentiating Eqn. (32) with respect to x and 

equating it to zero, we get on the maximum downwind 
distance as follows: 
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TABLE 1 
 

Comparison between observed, predicted and maximum normalized crosswind integrated ground level concentrations under different 
stabilities, mixing height, wind speed and maximum downwind distance 

 
Cyglc. (x, 0)*10-4 (s/m2)   

Run no. Stability h(m) U (m/s) distance (x) (m) w* 
Observed Predicated Maximum xmax. x/h 

1 Very unstable(A) 1980 3.34 1900 1.8 6.48 5.01 2.15 1.19 0.96 

1 Very unstable (A) 1980 3.34 3700 1.8 2.31 2.62 1.30 0.71 1.87 

2 Slightly unstable (C) 1920 7.79 2100 1.8 5.38 4.36 2.51 3.22 1.09 

2 Slightly unstable (C) 1920 7.79 4200 1.8 2.95 2.26 1.41 1.79 2.19 

3 Moderately unstable (B) 1120 3.82 1900 1.3 8.2 5.01 5.89 3.32 1.70 

3 Moderately unstable (B) 1120 3.82 3700 1.3 6.22 2.61 3.67 1.97 3.30 

3 Moderately unstable (B) 1120 3.82 5400 1.3 4.3 1.80 2.30 1.21 4.82 

5 Slightly unstable (C) 820 4.93 2100 0.7 6.72 4.50 10.74 9.92 2.56 

5 Slightly unstable (C) 820 4.93 4200 0.7 5.84 2.27 7.12 5.42 5.12 

5 Slightly unstable (C) 820 4.93 6100 0.7 4.97 1.57 4.42 2.97 7.44 

6 Slightly unstable (C) 1300 11.45 2000 2 3.96 4.35 2.60 4.27 1.54 

6 Slightly unstable (C) 1300 11.45 4200 2 2.22 2.21 1.42 2.30 3.23 

6 Slightly unstable (C) 1300 11.45 5900 2 1.83 1.60 0.85 1.37 4.54 

7 Moderately unstable (B) 1850 6.52 2000 2.2 6.7 4.57 1.58 1.65 1.08 

7 Moderately unstable (B) 1850 6.52 4100 2.2 3.25 2.32 0.88 0.91 2.22 

7 Moderately unstable (B) 1850 6.52 5300 2.2 2.23 1.81 0.62 0.64 2.86 

8 Neutral (D) 810 6.68 1900 2.2 4.16 4.89 0.02 1.89 2.35 

8 Neutral (D) 810 6.68 3600 2.2 2.02 2.68 0.05 1.17 4.44 

8 Neutral (D) 810 6.68 5300 2.2 1.52 1.85 0.07 0.73 6.54 

9 Slightly unstable (C) 2090 8.11 2100 1.9 4.58 4.34 2.15 2.93 1.00 

9 Slightly unstable (C) 2090 8.11 4200 1.9 3.11 2.26 1.21 1.63 2.01 

9 Slightly unstable (C) 2090 8.11 6000 1.9 2.59 1.60 0.70 0.94 2.87 

 
 
Substituting from Eqn. (33) in Eqn. (32), we get the 

maximum crosswind integrated ground level 
concentration as follows :  

 

    

 

v

v

v

,0 1

ln ln

k
k v

1

k 1

v v

k 1

ln

k k 1

y

s s

s s

s
s

C x

Q
h h h h

u u
h h

u
w

sw s

s

h s
w h

h
s

s

h
w h u

h

h h
u

h

h
w w h u

h









 









 






                 




                      















              

The data used was observed from the atmospheric 
diffusion experiments conducted at the northern part of 
Copenhagen, Denmark, under neutral and unstable 
conditions (Gryning and Lyck, 1984; Gryning et al., 
1987). Table 1 shows that the comparison between 
observed, predicted and maximum integrated crosswind 
ground level concentrations under different stabilities, 
mixing height, wind speed and maximum downwind 
distance. 

 
 
Fig. 1. Shows comparison between the observed, 

predicated and maximum normalized crosswind integrated 
ground level concentrations under different stabilities. 

 
Fig. 2. Shows comparison between the observed, 

predicated and maximum normalized crosswind integrated                                                     (34) 
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Fig. 1.  Comparison between the observed with predicated and 
maximum normalized crosswind integrated ground level 
concentration 
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Fig. 2.  Comparison between the observed, predicated and  

maximum normalized crosswind integrated ground level 
concentrations via downwind distance per height    
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Fig. 3.  Comparison between maximum downwind distance and 

the observed, predicated and maximum normalized 
crosswind integrated ground level concentrations 

ground level concentrations under different stability via 
downwind distance over height.  

 
Fig. 3. Shows comparison between maximum 

downwind distances and the observed, predicated and 
maximum normalized crosswind integrated ground level 
concentrations under different stabilities. 

 
3. Statistical method 
        

Now, the statistical method is presented and 
comparison between predicted and observed results will 
be offered by (Hanna, 1989). The following standard 
statistical performance measures that characterize the 
agreement between prediction (Cp = Cpred/Q) and 
observations (Co = Cobs/Q):  
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Where σp and σo are the standard deviations of Cp 

and Co respectively. Here the over bars indicate the 
average over all measurements. A perfect model would 
have the following idealized performance: NMSE = FB = 
0 and COR = 1.0. 

 
From the statistical method, we find that the two 

models are within a factor of two with observed data.  
According to NMSE and FB, the predicted normalized 
crosswind integrated ground level concentration is better 
than maximum normalized crosswind integrated ground 
level concentration. The correlation of predicated model 
equals (0.67) and maximum model equals (0.70)               
(Table 2). 
 
4. Conclusions 
 

This method solving Laplace transforms technique 
and  eddy  diffusivity  depends  on  the  vertical  height  in  
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TABLE 2 
 

Comparison between two models according to standard statistical performance measure 
 

Models NMSE FB COR FAC2 

Predicted concentration 0.26 0.32 0.67 0.80 

Maximum concentration 0.62 0.52 0.70 0.51 

 
 
 
 
neutral and unstable conditions. Also the predicted and 
maximum normalized crosswind integrated ground level 
concentrations are estimated.  We find that the predicted 
and maximum normalized crosswind integrated 
concentrations are within a factor of two with observed 
concentration data. One finds that there is agreement 
between maximum and predicted normalized crosswind 
integrated concentrations with the observed normalized 
crosswind integrated concentrations. 

Gryning, S. E., Holtslag, A. A. M., Irwin, J. S. and Sivertsen, B., 1987, 
“Applied dispersion modeling based on meteorological scaling 
parameters”, Atoms. Environ., 21, 1, 79-89. 

 
Hanna, S. R., 1989, “Confidence limit for air quality models as estimated 

by bootstrap and Jackknife resembling methods”, Atom. 
Environ., 23, 1385-1395. 

 
John, M. Stockie, 2011, “The Mathematics of atmospheric dispersion 

molding”, Society for Industrial and Applied Mathematics, 53, 
2, 349-372. 

  
Lin, J. S. and Hildemann, L. M., 1997, “A generalized mathematical 

scheme to analytical solve the atmospheric diffusion equation 
with dry deposition”, Atmos. Environ., 31, 59-71. 

 
References 

  
Pasquill, F. and Smith, F. B., 1983, “Atmospheric Diffusion 3rd edition”, 

Wiley, New York, USA. 
Arya, S. P., 1995, “Modeling and parameterization of near-source 

diffusion in weak wind”, J. Appl.  Met., 34, 1112-1122.  
                                                   
Seinfeld, J. H., 1986, “Atmospheric Chemistry and physics of Air 

Pollution”, Wiley, New York. 
Demuth, C., 1978, “A contribution to the analytical steady solution of 

the diffusion equation”, Atmos. Environ., 12, 5, 1255-1258. 
  
Shamus, 1980, “Theories and examples in Mathematics for Engineering 

and Scientific”. 
Essa, K. S. M. and Maha, S. EL-Qtaify, 2006, “Diffusion from a point 

source in an urban Atmosphere”, Meteol. Atmo, Phys., 92,       
95-101.       

Sharan, M., Singh, M. P. and Yadav, A. K., 1996, “Mathematical model 
for atmospheric dispersion in low winds with eddy diffusivities 
as linear functions of downwind distance”, Atmospheric 
Environment, 30, 1137-1145. 

 
Essa, K. S. M. and Found, E. A., 2011, “Estimated of crosswind 

integrated Gaussian and  Non-Gaussian concentration by using 
different dispersion schemes”, Australian Journal of Basic and 
Applied Sciences, 5, 11, 1580-1587.  

Tirabassi, T., Tagliazucca, M. and Zannetti, P. Kappag, 1986, “A non-
Gaussian plume dispersion model”, JAPCA, 36, 592-596. 

 
Essa, K. S. M., Mina, A. N. and higazy, Mamdouh, 2011, “Analytical 

Solution of diffusion equation in two dimensions using two 
forms of eddy diffusivities”, Rom. Journal. Phys., Vl.56, 
Nons.9-10, 1228-1240, Bucharest. 

 
Van Ulden, A. P. and Hotslag, A. A. M., 1978, “Estimation of 

atmospheric boundary layer parameters for diffusion 
applications”, Journal of Climate and Applied Meteorology, 24, 
1196-1207. 

 
Gryning, S. E. and Lyck, E., 1984, “Atmospheric dispersion from 

elevated sources in an urban area: Comparison between tracer 
experiments and model calculations”, J. Climate Appl. Meteor., 
23, 651-660. 

 
Zannetti, P. Kappag, 1986, “A non-Gaussian plume dispersion model”, 

JAPCA, 36, 592-596. 
 
 
 
 
 
 
       
 

 
 
 

 


	M. ABDEL-WAHAB, KHALED S. M. ESSA*, M. EMBABY* and SAWSAN E. M. ELSAID*
	(c) The concentration of the pollutant tends to zero at large distance of the source, i.e., 
	Cy (x, z) = 0     at x, z→ ∞                                      (iii)                                                                                                                            
	TABLE 2
	Comparison between two models according to standard statistical performance measure
	Models
	NMSE
	FB
	COR
	FAC2
	Predicted concentration
	0.26
	0.32
	0.67
	0.80
	Maximum concentration
	0.62
	0.52
	0.70
	0.51

