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ABSTRACT. The advection diffusion equation (ADE) is solved in two directions to obtain the crosswind
integrated concentration in neutral and unstable conditions. The solution is solved using Laplace transformation technique
and considering the wind speed and eddy diffusivity depending on the vertical height. Also the ground level and
maximum concentrations are estimated. We use in this model empirical data from Copenhagen (Denmark) to compare
between predicted and observed concentration data.

Key words — Advection diffusion equation, Neutral and unstable conditions, Laplace transform, Maximum and

551.553

predicted normalized crosswind integrated concentrations.

1. Introduction

The analytical solution of the atmospheric diffusion
equation contains different shapes depending on Gaussian
and non- Gaussian solutions. An analytical solution with
power law for wind and eddy diffusivity with the realistic
assumption was studied by (Demuth, 1978). The solution
has been implemented in the KAPPA-G model (Zannetti,
1986; Tirabassi et al., 1986). (Lin and Hildemann, 1997)
extended the solution of (Demuth, 1978) under boundary
conditions suitable for dry deposition at the ground. The
mathematics of atmospheric dispersion modeling is
studied by (John, 2011). In the analytical solutions of the
diffusion-advection equation, assuming constant along the
whole planetary boundary layer (PBL) or following a
power law was studied by (Van Ulden and Hotslag, 1978;
Pasquill and Smith, 1983; Seinfeld, 1986; Tirabassi et al.,
1986; Sharan et al., 1996).

Estimation of crosswind integrated Gaussian and
non-Gaussian concentration through different dispersion
schemes is studied by (Essa and Fouad, 2011). Analytical
solution of diffusion equation in two dimensions using
two forms of eddy diffusivities is studied by Essa et al.
(2011).

In this paper the advection diffusion equation (ADE)
is solved in two directions to obtain crosswind integrated
ground level concentration in neutral and unstable
conditions. Laplace transformation technique is used
considering the variation of wind speed and eddy
diffusivity with height. Also the maximum ground level
concentration is estimated. Observed data from
Copenhagen (Denmark) and predicted concentration data
using statistical technique is compared.

2. Analytical solution

Time dependent advection — diffusion equation is
written as (Arya, 1995).

oC aC o, oc) af(, oc) o(, oC

Ul =k | ky o | kg

a  x x\“ax) oyl Yoy alta
(D

where,

X is along wind coordinate measured in wind
direction from the source (m).

y is the crosswind coordinate direction (m).
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z is vertical coordinate measured from the
ground (m).

C (x, ¥, z) is the mean concentration of diffusing
substance at a point (X, Y, Z) (ug/m3).

ke, Kk, and k, are the eddy diffusivity coefficients
along x, y and z respectively (m?/s).

For steady state, taking dc/dt = 0 and neglecting
diffusion in the x-axis direction because it is small with
respect to the advection in the same direction, then Eqn. 1
becomes as follows :

oc o oC 0 oC
u —= — ky — |+ [ kzj
ox oy oy oz oz

Integrating Eqn. (2) with respect to y, we obtain the
normalized crosswind integrated concentration
Cy (X, z) of contaminant at a point (X, z) of the atmospheric
advection-diffusion equation in the form (Essa et al.,
2006):

2
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The above equation is solved in neutral and unstable
stabilities using two different schemes for the eddy
diffusivity as follows:

2

3

A. Inneutral case
Taking k (2) =k, W~2 4)

where k, is the von-Karman constant and W« is the
scale vertical velocity.

Substituting from equation (4) in equation (3), we
obtain that:
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Applying the Laplace transform on Eqn. 5 with
respect to X, we obtain that:

6y(s,z)= Ly [cy(x,z);x—>sJ

Ly (Z—ijzséy(s,z)—cy(o,z) (©)

where L is the operator of the Laplace transform
Substituting from Eqn. 6 in Eqn. 5, we get that:

0*Cy(s,z) 18Cy(s,2) s
oz> z Kk, Wz

)

Equation (3) is subjected to the following boundary
condition

(a) The flux at ground and top of the mixing layer can
be given by:

K oy 0 0,h (i)
=0 at z=0, |
Yy

(b) The mass continuity is written in the form:
U@ Cyx,2)=Q 3 (z-hy) atx=0 (i)

where 6 is Dirac delta function, Q is the source
strength and h; is the stack height.

(¢) The concentration of the pollutant tends to zero at
large distance of the source, i.€.,
Cy(Xx,2)=0 atx,z— (iii)

Substituted from (ii) in equation (7) we obtain that:

o%C, (s,z oC, (5,2 s
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Q
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Integrated Eqn. (8) with respect to z, we obtain that:

oCy (s,2) _usin(2)
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Equation (9) is non-homogeneous differential
equation then, this equation has got two solutions, one is
homogeneous and other is special solution. In order to

solve the homogeneous equation, we putt =0in
vWihg
equation 9, then the solution becomes:
~ sulnz
Cy(s,z [ )Z
M —cel (10)

After taking Laplace transform in equation (10) and
substituting from (ii), we obtain that:

c :éé(z—hs) (11)

Substituting from equation (11) in equation (10) we
obtain that :

~ sulnz Z
Cy(s.2) ~ 5(z—hs)e P

us
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- y ( ):Le kW (12)
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The special solution of equation (9), is in the form as
follows:

0z kW« k, Wxhg
Cy(s,z
L R
K, wahg [D _ usiniz) Sln(z)j
ka*
(13)

where, D= —
Z

Then solution of equation (13) is in the form as
follows:

Cy(s,z) 1

_s[u( hlnh—zlnz)J
= e
Q ushgInh

k, w,

(14

The general solution of equation (13) is given by
summing two solutions equations (14) and (12) in the
form:

=—g\
Q us
u(hlnh-zInz)
| S{kw}
+—Je
ushglnh
(15)
Taking Laplace inverse on Eqn. (15), we get that :
G (x2) _ !
D)
ky W,
. 1
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Since,

L' (AaB)=L"" (AL (B) ,L‘l(ljzl,

! [exp—(a S)J =

| 4, |
dL =
X+aan [exp(as)] T a

L is the operator of the inverse Laplace transform
by (Shamus, 1980). To calculate the integrated ground
level concentration, we put z = 0 in Eqn. (16), we get that:

Cy(X,O): 1
Q u{x_uhsln(hs)}
ky w,
1
+

oo - 2L

(17)
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Differentiating Eqn. (17) with respect to X and
equating the result to zero, we get the maximum
downwind distance in the form :

. u|Jhin(h) |(h=hs)in(n)
" w1+ frgin(n) | {19

Substituting from Eqn. (18) in Eqn. (17), we get the
maximum  crosswind  integrated  ground  level
concentration as follows:-

Cmax (X.0)
Q
1
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B. Inunstable case

In unstable case we take the value of the vertical
eddy diffusivity in the form:

k@) =k,w:z (1-z/h) (20)

Substituting from equation (20) in equation (3), we
get that:

Z 2z
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Applying the Laplace transform on Eqn. (21) with
respect to X and considering that:

¢, (s.2)=L, [cy(x,z);x—>sJ

L, (%J:séy(s,z)—cy(o,z) (22)

where L, is the operator of the Laplace transform

Substituting from Eqn. (22) in Eqn. (21), we obtain
that:

h
u
= 2 CY(O’Z)
kW z—z—
v h
(23)
Substituting from (ii) in Eqn. 23 we get:
aZCy(s,z) h &, (s,2)
a’ 7 a
7—
h
us - Q(z-h)
; C,(s,2) ;
K| 2= k|2
h h
(24)

After integrating equation (24) with respect to z, we
obtain that:

z-h
oCy (s,2) usl=r-
z kW Gy (s
_ Q
k Wehg (I—EJ

(25)

Eqn. (25) is non-homogeneous differential equation
then, above equation has got two solutions, one is
homogeneous and other is special solution, in order to

-Q

h
k, wshg (l—hsj

solve the homogeneous, we put, =0in

Eqn. (25), the solution becomes:
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suln

=C,¢€ (26)

After taking Laplace transform in equation (26) and
substitute from (ii), we obtain that:

1
C; :Eé‘(z_hs)

@7

Substituting from equation (27) in equation (26) we
get that:

sutn|Ms=h
o v Wi
S 1,
Q us
(28)
The special solution of equation (25) becomes:
suln z-h
3 z
k., W«
Cy(s.2) _ 1 o
h
Q kyw,hg| —>—1
h
(29)

Then, the general solution of eqn. (25) is as follows:

suln h-h
3 K W
Q us
su]nz_h
~ z
| K W
+ e
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Taking Laplace inverse of equation (30), we get
that:

Cy(x,z): 1
Q uln hs —h
h
u| x S
k, w,
1
" h
h uln il
YL e e
h k, w,
(31
Since:
C (ae) =L (W) (@) (1)
_ 1 _ 1
L exp— = aL! -
[exp (as)} ™ [exp(as)] a

L is the operator of the Laplace inverse transform
by (Shamus, 1980).

To get the crosswind integrated ground level
concentration, we put z = 0 in Eqn. 31, we get that:

Cy(x,0) _ 1 . 1
Q uln hs —h k,, Wyhg [hs—ljx
h h
ul x—
k, w,

(32)

Differentiating Eqn. (32) with respect to X and
equating it to zero, we get on the maximum downwind
distance as follows:

Uln

hy—h
hS

max ~

k., W, H k, w,hg [1—

hs

h

(33)
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TABLE1

Comparison between observed, predicted and maximum normalized crosswind integrated ground level concentrations under different
stabilities, mixing height, wind speed and maximum downwind distance

Cyaic. (X, 0)*10* (s/m?)

Run no. Stability h(m) U (m/s) distance (X) (m)  w=

Observed  Predicated Maximum Xmax. x/h
1 Very unstable(A) 1980 3.34 1900 1.8 6.48 5.01 2.15 1.19 0.96
1 Very unstable (A) 1980 3.34 3700 1.8 2.31 2.62 1.30 0.71 1.87
2 Slightly unstable (C) 1920 7.79 2100 1.8 5.38 4.36 2.51 322 1.09
2 Slightly unstable (C) 1920 7.79 4200 1.8 2.95 2.26 1.41 1.79 2.19
3 Moderately unstable (B) 1120 3.82 1900 1.3 8.2 5.01 5.89 332 1.70
3 Moderately unstable (B) 1120 3.82 3700 13 6.22 2.61 3.67 1.97 3.30
3 Moderately unstable (B) 1120 3.82 5400 1.3 43 1.80 2.30 1.21 4.82
5 Slightly unstable (C) 820 4.93 2100 0.7 6.72 4.50 10.74 9.92 2.56
5 Slightly unstable (C) 820 4.93 4200 0.7 5.84 227 7.12 5.42 5.12
5 Slightly unstable (C) 820 4.93 6100 0.7 4.97 1.57 4.42 2.97 7.44
6 Slightly unstable (C) 1300 11.45 2000 2 3.96 435 2.60 4.27 1.54
6 Slightly unstable (C) 1300 11.45 4200 2 222 221 1.42 2.30 3.23
6 Slightly unstable (C) 1300 11.45 5900 2 1.83 1.60 0.85 1.37 4.54
7 Moderately unstable (B) 1850 6.52 2000 22 6.7 4.57 1.58 1.65 1.08
7 Moderately unstable (B) 1850 6.52 4100 22 3.25 2.32 0.88 0.91 2.22
7 Moderately unstable (B) 1850 6.52 5300 22 223 1.81 0.62 0.64 2.86
8 Neutral (D) 810 6.68 1900 22 4.16 4.89 0.02 1.89 2.35
8 Neutral (D) 810 6.68 3600 22 2.02 2.68 0.05 1.17 4.44
8 Neutral (D) 810 6.68 5300 22 1.52 1.85 0.07 0.73 6.54
9 Slightly unstable (C) 2090 8.11 2100 1.9 4.58 434 2.15 2.93 1.00
9 Slightly unstable (C) 2090 8.11 4200 1.9 3.11 2.26 1.21 1.63 2.01
9 Slightly unstable (C) 2090 8.11 6000 1.9 2.59 1.60 0.70 0.94 2.87

Substituting from Eqn. (33) in Eqn. (32), we get the

maximum  crosswind  integrated  ground
concentration as follows :
¢, (x0) _ 1
Q
~h -h
uln , uln ",
hy
k, w,

v

level

(34

The data used was observed from the atmospheric
diffusion experiments conducted at the northern part of
Copenhagen, Denmark, under neutral and unstable
conditions (Gryning and Lyck, 1984; Gryning et al.,
1987). Table 1 shows that the comparison between
observed, predicted and maximum integrated crosswind
ground level concentrations under different stabilities,
mixing height, wind speed and maximum downwind
distance.

Fig. 1. Shows comparison between the observed,
predicated and maximum normalized crosswind integrated
ground level concentrations under different stabilities.

Fig. 2. Shows comparison between the observed,
predicated and maximum normalized crosswind integrated



WAHAB et al. : CROSSWIND INTEGRATED GROUND LEVEL CONCENTRATION 661

18.00

-+ ground level —#— maximum ground level concentration

16.00

14.00

12.00

10.00

Cpgic/Q(ms?)

R o ® D o ) P AV o P Q@ us 3
oXaP P v ¥ b/\o;b;b%%,{b% ,bm,bwbw,beaa oS
Coge/QMIS?)

Fig. 1. Comparison between the observed with predicated and
maximum normalized crosswind integrated ground level

concentration
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Fig. 2. Comparison between the observed, predicated and
maximum normalized crosswind integrated ground level

concentrations via downwind distance per height
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Fig. 3. Comparison between maximum downwind distance and

the observed, predicated and maximum normalized

crosswind integrated ground level concentrations

ground level concentrations under different stability via
downwind distance over height.

Fig. 3. Shows comparison between maximum
downwind distances and the observed, predicated and
maximum normalized crosswind integrated ground level
concentrations under different stabilities.

3. Statistical method

Now, the statistical method is presented and
comparison between predicted and observed results will
be offered by (Hanna, 1989). The following standard
statistical performance measures that characterize the
agreement between prediction (C, Cored/Q) and
observations (Cy= C,,/Q):

(% -Cy)
05(Co-Cp)]

Fractional Bias (FB) =

E-c)
(CoCo)

Normalized Mean Square Error(NMSE) =

Correlation Coefficient (COR)

1
iy 2 (CoiCo) (000

Factor of Two(FAC2)=0.5<—2 <20

o

Where o, and o, are the standard deviations of C,
and C, respectively. Here the over bars indicate the
average over all measurements. A perfect model would
have the following idealized performance: NMSE = FB =
0 and COR = 1.0.

From the statistical method, we find that the two
models are within a factor of two with observed data.
According to NMSE and FB, the predicted normalized
crosswind integrated ground level concentration is better
than maximum normalized crosswind integrated ground
level concentration. The correlation of predicated model
equals (0.67) and maximum model equals (0.70)
(Table 2).

4. Conclusions

This method solving Laplace transforms technique
and eddy diffusivity depends on the vertical height in
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TABLE 2

Comparison between two models according to standard statistical performance measure

Models NMSE FB COR FAC2
Predicted concentration 0.26 0.32 0.67 0.80
Maximum concentration 0.62 0.52 0.70 0.51

neutral and unstable conditions. Also the predicted and
maximum normalized crosswind integrated ground level
concentrations are estimated. We find that the predicted
and maximum normalized crosswind integrated
concentrations are within a factor of two with observed
concentration data. One finds that there is agreement
between maximum and predicted normalized crosswind
integrated concentrations with the observed normalized
crosswind integrated concentrations.
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