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सार — त�मलनाड ुम� वैगई नद� क� दस उप-द्रो�णय� क े1976 स े2009 तक 34 वष� क ेवषार् के आँकड़ े  एकत्र �कए  गए और 

�व�भन्न संभाव्यता �वतरण फलन� का उपयोग करक ेसांिख्यक�य रूप से इनका �वश्लेषण �कया गया। अध्ययन �ेत्र क े �लए दो 
उत्कृष्ट उपयुक्त पर��ण� का उपयोग करक ेवा�षर्क, मा�सक और ऋतु�नष्ठ वषार् क े�लए सबस ेउपयुक्त संभाव्यता �वतरण पाए गए। 
मॉडल क� पहचान, नैदा�नक जांच और अध्ययन �ेत्र क� वा�षर्क वषार् पूवार्नुमान क े �लए बॉक्स-जेन�कंस ऑटो�रग्रे�सव इंट�ग्रेटेड 

मू�वंग एवरेज (ARIMA) पद्ध�त को अपनाया गया। प्रत्येक उप-द्रोणी क े �लए सवर्श्रेष्ठ ARIMA मॉडल का चयन �कया गया, और 

2010, 2015, 2020 और 2025 क े �लए औसत वा�षर्क वषार् का पूवार्नुमान �दया गया। पूवार्नुमा�नत प�रणाम क� तुलना 2020 तक 

प्रे��त �कए गए डेटा स ेअच्छ� तरह से क� गई, जो मॉडल क� उपयुक्तता को दशार्ता है। 
 
ABSTRACT. A 34-year rainfall data from 1976 to 2009 of ten sub-basins of the Vaigai River in Tamil Nadu were 

collected and analysed statistically using various probability distribution functions. The best-fit probability distributions 
for the annual, monthly and seasonal rainfall for the study area were found using two goodness-of-fit tests. The Box-
Jenkins Autoregressive Integrated Moving Average (ARIMA) methodology has been adopted for model identification, 
diagnostic checking and forecasting the study area's annual rainfall. The best ARIMA models were selected for each sub-
basin and the average annual precipitation for 2010, 2015, 2020 and 2025 has been forecasted. The forecasted result 
compared well with observed dataup to 2020, which indicates the appropriateness of the model. 

 

Key words  – ARIMA, Rainfall, Probability analysis, Forecasting. 
 
 
1.  Introduction 
 

The rainfall distribution pattern, duration, temporal 
and spatial variation significantly influence the 
agricultural systems. India's economy is mainly dependent 
on agriculture, which is affected directly by the variation 
in rainfall. The varying seasonal, annual and monthly 
rainfall trends are useful in managing the cropping system 
and applying irrigation properly. Several studies have 
been conducted in India and abroad on rainfall analysis 
and best fit probability distribution functions were found 
to analyse the trend of rainfall (Sharma and Singh, 2010). 
Ray et al. (1980) stated that the weekly, monthly and 
seasonal pattern of rainfall and their probabilities help 
crop planning by identifying the periods of drought, 
normal and excess rain. The influence of rainfall on wheat 
yield in Rothamsted was studied by Fisher (1925). 

The early warning of rainfall helps manage water 
resources and it also helps in taking preventive measures 
against natural calamities like floods and drought. In 
India, many researchers have done forecasting rainfall all 
over the country with various spatial and temporal 
resolutions (Kaushik and Singh, 2008; Chattopadhyay and 
Chattopadhyay, 2010; Narayanan et al., 2013). Eni and 
Adeyeye (2015) did a seasonal ARIMA modeling and 
forecasting rainfall in Warri town, Nigeria. Several 
empirical approaches, viz., regression, Autoregressive 
Integrated Moving Average (ARIMA), fuzzy logic, 
artificial neural network (ANN), etc., are widely used for 
rainfall forecasting. The empirical approaches for rainfall 
forecasting deal with evaluating past rainfall data and 
setting a link with self or other meteorological variables 
(Narayanan et al., 2016). Valipour (2015) investigated the 
ability of the seasonal autoregressive integrated moving 
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TABLE 1 
 

Description of various probability distribution functions 
 

S. No. Name of the probability distribution Probability density function Range Parameters 
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TABLE 1 (Contd.) 
 

S. No. Name of the probability distribution Probability density function Range Parameters 
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average (SARIMA) and autoregressive integrated moving 
average (ARIMA) models for long-term runoff 
forecasting in the United States. 
 

In this study, the ARIMA model was used to forecast 
the average annual rainfall for ten different sub-basins of 
the Vaigai River in Tamil Nadu. 
 
2. Materials and method 

 
Daily rainfall data for 34 years (1976-2009) of 10 

sub-basins in Vaigai basin, Tamil Nadu were collected 
from the Tamil Nadu state Public Works Department 
(PWD) observatory.These sub-basins lie in the 
southernmost part of the Indian subcontinent and are 
located between 9°30́ and 10°10ʹ North latitudes and 
77°10ʹ and 77°40ʹ East longitudes. The ten sub-basins 
monthly, seasonal and annual rainfall patterns were 
statistically analysed using various probability distribution 
functions. Johnson SB, General Pareto, Dagum and others. 
(Table 1). 
 

Seasonal rainfall was classified into four categories, 
viz., southwest monsoon (June-September), northeast 
monsoon (October-November), summer (March-May) and 

winter (December-February). The probability distributions 
were fitted to the data using the data analyser and 
simulation software, Easy fit. 

 
The Kolmogorov Smirnov and Anderson Darling 

statistical goodness-of-fit tests were carried out to select 
the best fit probability distribution based on the highest 
rank with minimum test statistic value. The annual rainfall 
pattern for the next 16 years (until 2025) was forecasted 
using Box-Jenkin’s ARIMA method based on the best fit 
probability distribution. The statistical software SPSS was 
used for predicting the annual rainfall. 
 

2.1. Box-Jenkins model 
 
The Box-Jenkins model (Box and Jenkins,1976) is 

the best used computer-calculated forecasting model 
based on time-series data regression studies. The basic 
principle behind this methodology is that the present value 
of the series is in any way related to its past values. Given 
a time series of data Xt, the ARMA model is a tool for 
understanding and perhaps, predicting future values             
in this series. The model consists of two parts, an 
autoregressive (AR) component and a moving average 
(MA) part. The model is usually referred to as the ARMA 
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(p,q) model, where p is the order of the autoregressive part 
and q is the order of the moving average part (as defined 
below). 

 
2.1.1. Autoregressive model 

 
The notation AR (p) refers to the autoregressive 

model of order p. The AR (p) model is written as: 
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i
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where, pρρρ ....., 21 are the parameters of the model, 

c is a constant and tε is white noise. Sometimes the 
constant term is neglected. 

 
2.1.2. Moving Average model 

 
The notation MA (q) refers to the moving average 

series of order q: 
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where, p and q are respectively the AR and MA 

terms. 
 
Stationarity 
 
Box and Jenkins (1976), Anderson (1976), Judge et 

al. (1982), Chatfield (1984) and Pankratz (1983) pointed 
out that for the process to be strictly stationary, the joint 
distribution function describing the process must be 
invariant concerning time, where F(zt,...,zt+k) = 
F(zt+s,...,zt+s+k) for s and all k. This strong stationarity 
condition implies that the mean, variance and covariance 
are constant. 

2.2. Autoregressive Moving Average model (ARMA) 
 
The acronym ARIMA stands for “Auto-Regressive 

Integrated Moving Average”. Lags of the differenced 
series appearing in the forecasting equation are called 
“auto-regressive” terms, lags of the forecast errors are 
called “moving average” terms and a time series that 
needs to be differenced to be made stationary is said to be 
an “integrated” version of a stationary series. A non-
seasonal ARIMA model is classified as an “ARIMA 
(p,d,q)” model, where:  

 
(i) p is the number of autoregressive terms,  
 
(ii) d is the number of non-seasonal differences and  
 
(iii) q is the number of lagged forecast errors in the 

prediction equation.  
 

This method consists of four steps, identification, 
estimation, diagnostic checking and forecasting. 
 

2.2.1. Identification 
 
The problem is to find out the appropriate values of 

p, d and q. One of the essential tools for identifying is the 
autocorrelation function (ACF), the partial autocorrelation 
function (PACF) and the resulting correlograms, which 
are simply the ACF plots and PACFs against the lag 
length. One way of accomplishing this is to consider the 
ACF and PACF and the associated correlograms of a 
selected number of ARMA processes, such as AR(1), 
AR(2), MA(1), MA(2), ARMA (1,1), ARMA (2) and so 
on. Since each of these stochastic processes exhibits a 
typical ACF pattern and PACF, if the time series under 
study fits one of these patterns, we can identify the time 
series with that process. Of course, one will have to apply 
diagnostic tests to determine if the chosen ARIMA model 
is reasonably accurate. 
 

2.2.2. Estimation 
 
After identifying the appropriate values of p, d and q, 

the next step is to estimate the parameters of the 
autoregressive and moving average terms included in the 
model. Sometimes this calculation can be done by simple 
least-squares,' but sometimes, one will have to resort to 
the nonlinear (in parameter) estimation method. 
 

2.2.3. Checking the model accuracy’s 
 
Among the competitive Box- Jenkins model, the best 

model is selected based on maximum R2, minimum root 
mean square error (RMSE), minimum mean absolute 
percentage error (MAPE), minimum of maximum average  
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TABLE 2 
 

Monthly summary statistics for the Lower Vaigai basin 
 

S. No. Month Mean (�̅�𝑥) SD (σ) CV Maximum Minimum Kurtosis Skewness (γ) 

1. January 30.75 45.95 1.01 157.60 0.00 4.78 1.71 

2. February 32.02 51.86 0.92 235.73 0.00 9.35 2.50 

3. March 27.66 53.72 0.71 290.80 0.00 18.33 3.76 

4. April 54.40 70.56 0.74 379.48 0.74 14.60 3.15 

5. May 39.79 36.13 0.65 153.54 0.44 4.76 1.42 

6. June 19.15 19.28 0.60 73.39 0.00 3.78 1.27 

7. July 32.33 29.63 0.80 145.84 0.00 7.34 1.79 

8. August 36.50 25.94 1.49 107.73 0.00 2.97 0.67 

9. September 62.50 46.35 1.62 182.85 0.00 3.44 1.14 

10. October 218.00 142.48 1.94 557.98 0.00 2.99 0.80 

11. November 225.63 136.40 1.30 459.42 0.00 1.82 0.14 

12. December 122.90 98.78 0.91 419.20 0.00 3.96 1.18 

 
 
 
percentage error (MaxAPE), minimum of maximum 
absolute error (MaxAE) and minimum of Normalized 
BIC. Any model which has fulfilled most of the above 
criteria is selected. This section provides definitions of the 
goodness-of-fit measures used in time series modeling. 
 

2.3. R-squared 
 
An estimate of the proportion of the total variation in 

the series explained by the model. This measure is most 
useful when the series is stationary. Positive values mean 
that the model under consideration is better than the 
baseline model (Mishra, 2021). 
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2.4. Root Mean Square Error (RMSE) 
 
A measure of how much a dependent series varies 

from its model-predicted level, expressed in the same 
units as the dependent series. 
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2.5. Mean Absolute Percentage Error (MAPE) 
 
A measure of how much a dependent series varies 

from its model-predicted level. It is independent of the 
units used and can therefore, be used to compare series 
with different units. 
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2.6. Mean absolute error (MAE) 
 
Measures how much the series varies from its model-

predicted level. MAE is reported in the original series 
units. 
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2.7. Maximum absolute percentage error (MaxAPE) 
 
The largest forecasted error, expressed as a 

percentage. This measure is useful for imagining a worst-
case scenario for your forecasts. 
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TABLE 3 
 

Summary statistics for various seasons for the study area 
 

S. No. Sub basin Season Mean (�̅�𝑥) SD (σ) CV Maximum Minimum Kurtosis Skewness (γ) 

1. Lower Vaigai 

S.W. 150.49 70.69 0.47 331.70 23.70 3.22 0.73 

N.E. 566.52 253.07 0.45 1015.20 26.50 2.53 0.10 

Summer 62.77 72.77 1.16 286.90 0.00 4.07 1.30 

Winter 121.84 91.67 0.75 476.30 24.50 8.89 2.29 

2. Theniyaru 

S.W. 116.41 61.80 0.53 299.8 37.90 4.52 1.27 

N.E. 337.41 138.10 0.41 616.5 68.70 2.66 0.37 

Summer 31.98 40.85 1.28 157.6 0.00 4.38 1.50 

Winter 149.42 62.92 0.42 283.00 44.40 2.25 0.42 

3. Manjalaru 

S.W. 194.38 113.75 0.59 418.40 31.30 1.80 0.21 

N.E. 315.91 189.23 0.60 835.20 77.50 3.01 0.74 

Summer 20.47 27.80 1.36 131.00 0.00 9.37 2.46 

Winter 143.34 87.54 0.61 328.10 7.00 2.57 0.53 

4. Suruliyaru 

S.W. 249.18 19.30 0.46 587.70 75.30 3.62 0.74 

N.E. 359.57 25.29 0.42 741.80 143.60 2.73 0.61 

Summer 28.40 6.45 1.34 184.70 0.00 9.66 2.42 

Winter 166.49 12.89 0.46 305.60 13.40 2.21 0.15 

5. Sathaiyaru 

S.W. 269.93 83.20 0.31 440.60 131.20 1.99 0.18 

N.E. 379.95 166.38 0.44 740.80 87.40 2.66 0.45 

Summer 23.44 38.25 1.63 159.70 0.00 7.15 2.17 

Winter 135.20 65.84 0.49 329.60 45.20 4.30 1.23 

6. Sirumalaiyaru 

S.W. 250.71 90.30 0.36 463.20 86.00 2.50 0.10 

N.E. 401.79 187.28 0.47 882.60 43.80 3.13 0.41 

Summer 23.13 36.74 1.59 142.60 0.00 6.61 2.10 

Winter 162.20 68.70 0.42 357.70 58.50 3.29 0.71 

7. Upparu 

S.W. 292.11 79.23 0.27 476.80 110.80 3.16 0.10 

N.E. 367.47 143.77 0.39 690.20 126.80 2.76 0.59 

Summer 24.48 39.44 1.61 133.60 0.00 4.69 1.78 

Winter 116.61 63.60 0.55 306.00 28.60 5.03 1.31 

8. Varaganadhi 

S.W. 186.90 96.74 0.52 485.30 52.90 5.30 1.44 

N.E. 438.01 184.18 0.42 925.00 102.70 3.07 0.53 

Summer 43.17 54.98 1.27 207.60 0.00 5.27 1.75 

Winter 200.95 91.75 0.46 376.20 58.60 1.80 0.17 

9. Varattar-Nagalaru 

S.W. 163.00 190.48 0.48 347.10 69.60 2.46 0.82 

N.E. 361.93 423.88 0.49 916.20 83.70 4.02 0.90 

Summer 31.24 46.57 1.41 205.70 0.00 9.63 2.49 

Winter 141.10 161.66 0.42 300.20 37.40 3.31 0.63 

10. Upper Vaigai 

S.W. 152.65 75.33 0.49 347.20 14.10 3.01 0.16 

N.E. 345.00 141.45 0.41 628.40 128.00 2.12 0.26 

Summer 28.94 38.79 1.34 195.00 0.00 11.01 2.56 

Winter 150.11 76.46 0.51 315.70 9.90 2.79 0.39 
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TABLE 4 
 

First ranked probability distribution for monthly rainfall data of LowerVaigai using different goodness-of-fit tests 
 

S. No. Month 
Best-Fit Test Statistic Results 

First Ranked Distribution 
Kolmogorov Smirnov AndersonDarling 

1. January JSB (0.100) Rec. (0.625) JSB 

2. February Uniform (0.133) CS-2P (0.484) Uniform 

3. March Uniform (0.206) Rec. (0.625) Uniform 

4. April Uniform (0.206) Rec. (0.625) Uniform 

5. May Pert (0.104) Rec. (0.625) Pert 

6. June JSB (0.093) GP (0.294) JSB 

7. July JSB (0.065) GEV (0.239) JSB 

8. August Error (0.068) JSB (0.466) Error 

9. September JSB (0.057) JSB (0.454) JSB 

10. October JSB (0.051) Frechet (0.612) JSB 

11. November JSB (0.055) CS-2P (0.396) JSB 

12. December JSB (0.050) Error (0.127) JSB 
 

*JSB-Johnson SB, CS-Chi-Squared, GEV-Generalised Extreme Value, GP-General Pareto, Rec.-Reciprocal 
 
 

TABLE 5 
 

First ranked probability distribution for annual rainfall of different sub-basins using different goodness-of-fit tests 
 

S. No. Sub basin 
Best-Fit Test Statistic Results 

First Ranked Distribution 
Kolmogorov Smirnov AndersonDarling 

1. Lower Vaigai JSB (0.037) CS-2P (0.428) JSB 

2. Theniyaru Error (0.069) JSB (0.137) Error 

3. Manjalaru GEV (0.059) GEV (0.160) GEV 

4. Suruliyaru LL-3P (0.086) LL-3P (0.259) LL-3P 

5. Sathaiyaru Logistic (0.084) LL-3P (0.309) Logistic 

6. Sirumalaiyaru LP3 (0.071) GEV (0.171) LP3 

7. Upparu Frechet-3P (0.065) GEV (0.189) Frechet-3P 

8. Varaganadhi Kumaraswamy (0.080) Error (0.212) Kumaraswamy 

9. Varattar-Nagalaru Weibull (0.073) JSB (0.203) Weibull 

10. Upper Vaigai GEV (0.052) Gamma (0.313) GEV 
 

*JSB-Johnson SB, CS-Chi-Squared, LL-Log Logistic, GEV-Generalised Extreme Value, LP3-Log Pearson 3 
 

 
2.8. Maximum absolute error (MaxAE) 
 
The largest forecasted error, expressed in the same 

units as the dependent series. Like MaxAPE, it is useful 
for imagining the worst-case scenario for the forecasts.  

 

( ) ( )[ ]tX̂tX −= maxMaxAPE  

2.9. Normalized Bayesianinformation criterion 
(Normalized BIC) 

 
A general measure of the overall fit of a model that 

attempts to account for model complexity. It is a score 
based upon the mean square error and includes a penalty 
for the number of parameters in the model and the series’ 
length. The penalty removes the advantage of models with  
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TABLE 6 
 

Season-wise first ranked probability distribution using different goodness-of-fit tests 
 

S. No. Sub basin Season 
Best-Fit Test Statistic Results 

First Ranked distribution 
Kolmogorov Smirnov Anderson Darling 

1. Lower Vaigai 

S.W. JSB (0.038) JSB (0.197) JSB 
N.E. JSB (0.042) CS-2P (0.489) JSB 

Winter Beta (0.107) Rec. (0.625) Beta 
Summer JSB (0.082) Rec. (0.625) JSB 

2. Theniyaru 

S.W. P6 (0.077) Burr (0.226) P6 
N.E. Laplace (0.087) LL-3P (0.357) Laplace 

Winter Gamma (0.124) JSB (0.411) Gamma 
Summer GEV (0.072) Weibull-3P (0.235) GEV 

3. Manjalaru 

S.W. GP (0.078) GP (0.244) GP 
N.E. GP (0.056) GP (0.185) GP 

Winter GEV (0.105) GP (0.544) GEV 
Summer GEV (0.059) GEV (0.160) GEV 

4. Suruliyaru 

S.W. Pert (0.103) GEV (0.329) Pert 
N.E. GEV (0.074) JSB (0.165) GEV 

Winter GEV (0.122) GP (0.513) GEV 
Summer Rayleigh (0.095) GEV (0.370) Rayleigh 

5. Sathaiyaru 

S.W. Beta (0.100) JSB (0.315) Beta 
N.E. LL-3P (0.058) GEV (0.130) LL-3P 

Winter Gamma (0.117) JSB (0.779) Gamma 
Summer Burr (0.053) Burr (0.117) Burr 

6. Sirumalaiyaru 

S.W. P5-3P (0.067) LL-3P (0.163) P5-3P 
N.E. JSB (0.096) GP (1.049) JSB 

Winter Pert (0.088) GEV (0.218) Pert 
Summer LP3 (0.071) GEV (0.172) LP3 

7. Upparu 

S.W. Logistic(0.069) LL-3P (0.164) Logistic 
N.E. IG (0.072) LL-3P (0.213) IG 

Winter Gamma (0.176) GP (1.405) Gamma 
Summer Dagum (0.084) Dagum (0.237) Dagum 

8. Varaganadhi 

S.W. Burr (0.064) Burr (0.186) Burr 
N.E. Weibull-3P (0.084) GEV (0.160) GEV 

Winter GEV (0.115) GP (0.394) GEV 
Summer JSB (0.061) GP (0.168) JSB 

9. Varattar-Nagalaru 

S.W. LL-3P (0.095) GP (0.397) LL-3P 
N.E. Weibull-3P (0.066) GEV (0.138) Weibull-3P 

Winter Gamma (0.117) GP (0.567) Gamma 
Summer GumbelMax (0.085) LL-3P (0.260) Gumbel Max 

10. Upper Vaigai 

S.W. Burr-4P (0.093) Burr-4P (0.234) Burr-4P 

N.E. JSB (0.014) P6-4P (0.217) JSB 

Winter GP (0.227) GP (0.322) GP 

Summer P6-4P (0.679) GEV (0.389) GEV 
 

*JSB-Johnson SB, CS-Chi-Squared, LL-Log Logistic, GEV-Generalised Extreme Value, GP-General Pareto, P6-Pearson 6, IG-Inverse 
Gaussian, LP3-Log Pearson 3, P5-Pearson 5, Rec.-Reciprocal. 
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more parameters, making it easy to compare different 
models for the same series. 

 

( ) ( )
n
nk lnMSElnNBIC +=  

 
2.9.1. Diagnostic checking 
 
In this step, one can see whether the chosen model 

fits the data reasonably well. One simple test of the 
selected model is to see if the residuals estimated from 
this model white noise; if they are, one can accept the 
precise fit; if not, one starts the process afresh; thus, the 
Box-Jenkins Methodology is an iterative process. 
 

2.9.2. Forecasting 
 
One of the reasons for the popularity of ARIMA 

modeling is its success in forecasting.To forecast the 
values of a time series, the basic Box-Jenkins strategy is 
as follows. 
 
(i) First, examine the stationarity. This step can be done 
by computing the autocorrelation function (ACF) and 
partial autocorrelation (PACF) or a standard root analysis. 
 
(ii) If the time series is not stationary, the difference of 
the time series, one or more times to achieve stationarity. 
 
(iii) The stationary time series’ ACF and PACF are then 
computed to determine if the series is purely 
autoregressive or purely of the moving average type or a 
mixture of the two. 
 
(iv)  The tentative model is then estimated. 
 
(v) The residuals from this model are examined to find 
out if they are white noise. If they are, the tentative model 
is probably a good approximation to the underlying 
stochastic process. If they are not, the process is started all 
over again. Therefore, the Box-Jenkins method is an 
iterative one. The model finally selected can be used for 
forecasting. 
 
3. Results and discussion 
 

The 34 years (1976-2009) data from 10 different 
sub-basins were statistically analysed for getting the 
monthly and seasonal variation of rainfall. The test 
statistics for these data were generated and compared to 
examine the nature of each series. Table 2 shows the 
monthly summary statistics for the Lower Vaigai basin. 
The maximum monthly average rainfall was received 
during October, November and December, which the 
north-east monsoon contributed. The average monthly 

rainfall for the other nine sub-basins also followed a 
similar trend.  
 

Table 3 shows the summary statistics of seasonal 
rainfall for the study area. It is evident from the table that 
the North-East monsoon period received maximum 
average rainfall. The Lower Vaigai basin received the 
highest and the Manjalaru basin received the lowest 
average seasonal rainfall of 566.52 mm and 315.91 mm, 
respectively, during the North-East monsoon season. The 
monthly and seasonal rainfall data were fitted with 
multiple probability distributions. The first ranked 
probability distribution was selected for seasonal, annual 
and monthly rainfall for all ten sub-basins. The first rank 
probability distribution was calculated based on the two 
goodness-of-fit tests, viz., Kolmogorov Smirnov and 
Anderson Darling tests. The probability distribution 
having the highest rank with lower test statistics was 
chosen as the best-fit probability distribution for the 
particular data series. 
 

The first ranked probability distribution for the 
Lower Vaigai basin's monthly rainfall data using different 
goodness-of-fit tests was given in Table 4. 
 

The monthly rainfall data of the Lower Vaigai basin 
for January, June, July, September, October, November 
and December fits best with the Johnson SB distribution. 
In contrast, the data for February, March and April does 
best with the uniform distribution. The rainfall data of 
May month for the basin was fitted well with the Pert 
distribution function.  

 
The first ranked probability distribution for different 

sub-basins' annual rainfall using other goodness-of-fit 
tests was given in Table 5. Johnson SB distribution was 
the best-fit probability distribution for the annual rainfall 
data of the Lower Vaigai basin. In contrast, GEV was the 
best fit distribution for the Manjalaru basin for the same 
time series (Table 5). Kumaraswamy's double bounded 
distribution fitted well with the annual rainfall data of the 
Varaganadhi basin with a test statistic of 0.080. 

 
Table 6 shows the first ranked probability 

distribution for seasonal rainfall data.  The annual rainfall 
of the study area was distributed into four seasons, viz., 
southwest monsoon, northeast monsoon, winter and 
summer. The northeast monsoon contributed 
approximately 60% of the rainfall in the study area. 

 
The Johnson SB distribution fitted best with the 

northeast monsoon data of the Lower Vaigai, 
Sirumalaiyaru and Upper Vaigai basins. GEV was the best 
fit distribution for N-E monsoon data of Suruliyaru and 
Varaganadhi basin. 
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TABLE 7 
 

Model validation 
 

S. No. Sub basin 
ARIMA 

Model Type (p,d,q) 
Model Fit statistics 

R2 RMSE MAPE MAE MaxAPE MaxAE Norm. BIC 

1. Lower Vaigai (0,1,0) -0.87 398.76 47.05 310.21 537.72 1010.71 12.08 
2. Theniyaru (1,1,2) 0.92 185.09 25.42 94.95 356.42 10.97 0.92 
3. Manjalaru (0,0,0) 0.19 283.61 46.46 218.70 263.16 850.49 11.50 
4. Suruliyaru (0,0,0) 0.73 232.55 24.34 164.47 561.43 11.00 0.74 
5. Sathaiyaru (0,0,0) 0.13 210.49 22.59 165.33 67.93 429.56 10.91 
6. Sirumalaiyaru (1,0,1) 0.20 186.05 18.47 146.23 65.99 419.72 10.76 
7. Upparu (1,1,2) 0.68 189.17 18.55 137.87 92.64 425.21 10.91 
8. Varaganadhi (1,1,1) 0.05 238.79 22.67 183.51 50.04 656.45 11.27 
9. Varattar-Nagalaru (1,1,0) -0.22 250.34 32.23 206.70 93.17 497.18 11.26 

10. Upper Vaigai (1,1,5) 0.77 223.44 30.24 167.66 227.70 459.05 11.56 

 
 

TABLE 8 
 

Forecasting of annual rainfall of different sub-basins using the ARIMA model 
 

S. No. Sub basin 

Annual Rainfall (mm) 

2008 2009 2010 2015 2020 2025 

Obs. Exp. Obs. Exp. Obs. Exp. Obs. Exp. Obs. Exp. Exp. 

1. Lower Vaigai 1281.9 1297.2 953.3 968.6 821.0 983.9 1124.0 1060.2 755.1 1136.6 1213.0 

2. Theniyaru 608.0 594.4 617.8 821.3 665.8 642.9 581.4 665.2 838.9 668.9 669.2 

3. Manjalaru 877.4 896.3 504.8 509.0 936.6 923.3 880.0 990.6 1193.0 1057.9 1130.0 

4. Suruliyaru 862.2 900.3 748.3 864.8 956.1 890.0 807.3 901.0 880.3 910.0 920.0 

5. Sathaiyaru 885.4 933.9 759.9 742.0 805.8 950.1 946.2 990.6 897.5 1031.0 1071.5 

6. Sirumalaiyaru 920.0 903.0 713.0 730.0 837.8 898.0 972.5 906.0 842.9 914.0 922.0 

7. Upparu 816.0 851.9 742.1 776.0 800.7 831.9 836.4 785.5 947.8 821.7 796.2 

8. Varaganadhi 832.5 802.0 670.9 658.0 896.0 874.9 878.4 916.9 1129.4 938.2 959.5 

9. Varattar-Nagalaru 764.4 728.0 588.1 577.0 697.3 630.4 765.4 642.8 849.6 638.4 634.6 

10. Upper Vaigai 701.5 711.0 700.4 699.0 821.0 726.7 849.0 817.9 836.6 845.5 875.3 
 

*Obs. - Observed, Exp. – Expected. 
 
 

 
After finding the best-fit probability distribution for 

each data series, the annual rainfall for the upcoming 
years was forecasted using Box-Jenkins's methodology.  
The data from the year 2007to 2009 was taken for model 
validation. The forecasting of the rainfall data was done 
using the corresponding best fit probability distributions. 
Table 7 shows the results of model validation. The data 
from different sub-basins were fitted with other ARIMA 
models. The model with the maximum R2, minimum 
RMSE, minimum MAPE, minimum MaxAPE, minimum 
MaxAE and minimum Normalized BIC was chosen as the 
best model. 

The validation results show that the ARIMA (1,1,2) 
model fitted with the Theniyaru basin data is the best 
compared with the other models. The ARIMA (1,1,5), 
ARIMA (0,0,0) and ARIMA (1,1,2) models of the Upper 
Vaigai, Suruliyaru and Upparu basin could also be 
considered as the best models for the respective data sets. 
R2 value represents the proportion of variance explained 
by the fit. A negative R2 value for the Lower Vaigai and 
Varattar-Nagalaru basin indicates that the fit is worse than 
just fitting a horizontal line. The R2 is negative only when 
the chosen model does not follow the trend of the 
observed data. 
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Fig. 1. ACF and PACF graphs of residuals for the best fit model of the annual rainfall of the Theniyarubasin 
 

 
 

Fig. 2. Observed and expected annual rainfall of the Theniyaru basin 
 

 
 

Fig. 3. Observed and expected annual rainfall of the Upparu basin 
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The best fit models were put under the diagnostic 
check of the residuals with the ACF and PACF graph's 
help. Fig. 1 shows the ACF and PACF graphs of residuals 
for the best fit model of the annual rainfall of the 
Theniyaru basin.  

 
The average annual rainfall for 2010, 2015, 2020 and 

2025 for the ten sub-basins was predicted and the 
validated results for the observed annual rainfall in 2010, 
2015 and 2020 are given in Table 8. 

 
For example, the observed and expected annual 

rainfall for the Theniyaru basin (Fig. 2) shows that the 
observed data agrees with the expected annual rainfall. It 
indicates the model accuracy's in forecasting the annual 
rainfall. 
 

For the Theniyaru basin, the expected rainfall for 
2010, 2015, 2020 and 2025 was 642.9 mm, 665.2 mm, 
668.9 mm and 669.2 mm, respectively. For the year 2025, 
an average annual rainfall of 875.3 mm, 920 mm and 
796.2 mm is expected in the Upper Vaigai, Suruliyaru and 
Upparu basins. Out of these four sub-basins, the Upparu 
basin shows a decreasing trend in average annual rainfall 
from 2009 to 2025 (Fig. 3). 
 

The average annual rainfall of the Upparu basin is 
expected to decrease from 816 mm in 2009 to 769.2 mm 
in 2025. 

 
The forecasted annual rainfall will be helpful in crop 

planning and irrigation planning in the study area. 
Moreover, it will also be beneficial in taking precautions 
against the probable extreme natural events like floods 
and drought in the study area. 
 
4. Conclusion 

 
Our study statistically analysed the ten sub-basins 

(Vaigai river) rainfall data from 1976 to 2009 with various 
probability distributions and found the best fit probability 
distribution for monthly, seasonal and annual data series. 
The Kolmogorov Smirnov and Anderson Darling 
goodness-of-fit tests were used for ranking the distribution 
of various time series of data. Later, the ARIMA model 
using Box-Jenkin's methodology was used for forecasting 
the average annual rainfall for future years. The model 
validation was done from 2008 to 2010, 2015 and 2020.  

 
Our study found ARIMA (1,1,2), ARIMA (1,1,5), 

ARIMA (0,0,0) and ARIMA (1,1,2) to be the best models 
for forecasting the annual rainfall of Theniyaru, Upper 
Vaigai, Suruliyaru and Upparu basin respectively. The 
study predicted the average annual rainfall of 10 sub-

basins for 16 years from 2009 to 2025. The observed and 
predicted rainfall showed a good agreement, evident in the 
model's accuracy in predicted data. The forecasting results 
would help plan and manage irrigation of the crops in 
Vaigai river sub-basins. 
 
Disclaimer : The contents and views expressed in this 
study are the views of the authors and do not necessarily 
reflect the views of the organizations they belong to. 
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