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lkj & xkmlh; Iye ekWMy ,d lkekU; ekWMy gS ftlds }kjk vfHkogu folj.k lehdj.k dk v/;;u 
fd;k x;k gSA lrr Hkaoj folj.k’khyrk vkSj iou xfr ?kkr fu;e dk foospu djrs gq, ykIykl :ikarj.k ds 
mi;ksx }kjk rhu vk;keksa esa bls gy fd;k x;k gSA ØkWl iou lekdfyr  lkanzrk dks izkIr djus ds fy, 
bjfou] ikoj ykW] fozxl vkSj ekud i)fr;ksa tSlh fofHkUu ;kstukvksa dk mi;ksx fd;k x;k gSA bl 'kks/k esa 
;g irk djus ds fy, lkaf[;dh; mik;ksa dk mi;ksx fd;k x;k gS fd dksiug¢xu] MsuekdZ ls izkIr fd, x, 
izsf{kr lkanzrk ds lkFk csgRrj <ax ls esy [kkus okyh dkSu lh loksZRre ;kstuk gSA bl ekWMy ls izkIr fd, 
x, ifj.kkeksa dh rqyuk izsf{kr fd, x, vk¡dM+ksa ds lkFk dh xbZ gSA 

 
ABSTRACT. Gaussian plume model is a common model to study advection diffusion equation which is solved in 

three dimensions by using Laplace transformation considering constant eddy diffusivity and wind speed power law. 
Different schemes such as Irwin, Power Law, Briggs and Standard methods are used to obtain crosswind integrated 
concentration. Statistical measures are used in this paper to know which is the best scheme which agrees with the 
observed concentration data obtained from Copenhagen, Denmark. The results of model are compared with observed 
data. 
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1.    Introduction    
 

Our preoccupation about air pollution is a 
consequence of the explicit evidence that air contaminants 
adversely affect the health and the welfare of human 
beings. Air contaminants concentration affects the health 
of humans and animals; damage vegetation and materials; 
reduces visibility and solar radiation; and affects weather 
and climate (Arya, 1999). The study and the employment 
of operational short-range atmospheric dispersion models 
for environmental impact assessment have demonstrated 
to be of large use in the evaluation of ecosystems 
perturbation in many distinct scales (Meyer, et al., 2007). 
Therefore, short-range atmospheric dispersion models, 
including the physical description of the Planetary 
Boundary Layer (PBL), are fundamental tools to evaluate 
the noxious effect of air pollutants on human health and 
on urban and agricultural environments (Gokhale, et al., 

2004). Generally, such air quality short-range models can 
be useful in predicting contaminants concentration 
magnitudes in atmospheric boundary layer generated by 
different forcing mechanisms and consequently distinct 
degrees of complexity. 

 
An atmospheric dispersion model predicts downwind 

airborne concentrations of contaminants from a known 
release (the release location, altitude, amount of agent 
released, and meteorological data). Gaussian plume model 
is an example (Hanna, et al., 1982). 

 
Gaussian-plume models are widely used, well 

understood, easy to apply, and until more recently have 
received international approval. Even today, from a 
regulatory point of view ease of application and 
consistency between applications is important. Also, the 
assumptions, errors and uncertainties of these models are 
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generally well understood, although they still suffer from 
misuse.  

 
Gaussian-plume models play a major role in the 

regulatory arena. However, they may not always be the 
best models to use and it was noted at the 15th  
International Clean Air Conference 2000 – Modeling 
Workshop that particular models are not always chosen on 
an objective scientific basis (Ross, 2001). Gaussian-plume 
models are generally applicable when:  

 
 

(i)  The pollutants are chemically inert, a simple first-
order mechanism is appropriate, or the chemistry may be 
carried out as a post-processing step. 
 
(ii)  The terrain is not steep or complex.  
 
(iii) The meteorology may be considered uniform 
spatially.  
 
(iv)  There are few periods of calm or light winds.  
 

A careful choice of Gaussian-plume model is needed 
if the effects of deposition, chemistry or fumigation need 
to be simulated (Ministry for the Environment, 2004). 
 

Laplace transformation technique has been used to 
get desired solutions. In addition to this method, Hankel 
transform method, Airs moment method, perturbation 
approach, method using Green’s function, superposition 
method have also been used to get the analytical solutions 
of the advection–diffusion equations in one, two and three 
dimensions. But Laplace transformation technique has 
been commonly used because of being simpler than other 
methods and the analytical solutions using this method 
being more reliable in verifying the numerical solutions in 
terms of the accuracy and the stability (Kumar et al., 
2009). 

 
2. Mathematical model 

 
Under steady state dispersion from a line source 

neglecting diffusion along x-axis as compared to 
advection and the wind speed u, and considering wind 
speed and eddy diffusivity are constants then the equation 
of diffusion take the form: 
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where u is the wind speed; (m/s) 
 
C is the concentration; (g/m3) or (Bq/m3) 

K is the constant eddy diffusivity and x, y, z are the 
Cartesian coordinates. 

 
Equation (1) is solved under the boundary conditions 

as follows: 
 
(a) Mass continuity exists 
 
    C 0, y, z Q y    Hz    

 
 where, Q is the emission rate and δ is Dirac delta 
function. 
 
(b)  C x, y, z 0 at x, y, z → ∞ 

 

(c) Flux at ground equals zero   00,, 

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Equation (1) can be written in the form: 
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where, (ia) c(0, y) = δ (y) 
 
(ib) c(x, y) = 0 at x → ∞, y → ± ∞ 
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where, (iia) c(0, z) = δ (z - H) 
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H is the mixing height. 
 
Then the general solution is in the form: 
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First taking Laplace Transform for partial differential 

equation (i) with respect to x, we get 
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Where "m" is the transform variable. Applying the 
condition (ia) c(0, y) = δ (y), we obtain: 
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Taking Laplace transform in y we get the formula: 
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where, 
 

    1;,ˆ,ˆ
0

dyysCelsC 
ˆ ly

is the transform 

variable. We restrict ourselves to value 0 ≤ y ≤ ∞ for the 
symmetry over the entire range -∞ < y < ∞ equation (3) 
becomes: 
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Taking the inverse in y, we obtain: 
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Using the condition (ib) we get: 
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Also taking the inverse in s (assuming that p2 is 

independent of s), we get: 
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Taking Laplace transformation (ii) with respect to x 

we get: 
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Using the condition (iia), we obtain as follows: 
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Taking Laplace transform in z we get: 
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TABLE 1 
  

Values of wind speed at 10 m and 115 m and downwind distance through unstable and neutral stabilities in northern part of Copenhagen 
 

Run no. Stability U 10 (m.sec-1) U 115(m.sec-1) Downwind distance (m) 

1 Very unstable (A) 2.1 3.029172 1900 

1 Very unstable (A) 2.1 3.029172 3700 

2 Slightly unstable (C) 4.9 7.986117 2100 

2 Slightly unstable (C) 4.9 7.986117 4200 

3 Moderately unstable (B) 2.4 3.461911 1900 

3 Moderately unstable (B) 2.4 3.461911 3700 

3 Moderately unstable (B) 2.4 3.461911 5400 

4 Slightly unstable (C) 2.5 4.074549 4000 

5 Slightly unstable (C) 3.1 5.052441 2100 

5 Slightly unstable (C) 3.1 5.052441 4200 

5 Slightly unstable (C) 3.1 5.052441 6100 

6 Slightly unstable (C) 7.2 11.7347 2000 

6 Slightly unstable (C) 7.2 11.7347 4200 

6 Slightly unstable (C) 7.2 11.7347 5900 

7 Moderately unstable (B) 4.1 5.914098 2000 

7 Moderately unstable (B) 4.1 5.914098 4100 

7 Moderately unstable (B) 4.1 5.914098 5300 

8 Neutral (D) 4.2 7.734349 1900 

8 Neutral (D) 4.2 7.734349 3600 

8 Neutral (D) 4.2 7.734349 5300 

9 Slightly unstable (C) 5.1 8.312081 2100 

9 Slightly unstable (C) 5.1 8.312081 4200 

9 Slightly unstable (C) 5.1 8.312081 6000 

 
 

 
 
 
 

Since  ĉ s, z 0as z   we get:    
 usm

escm
msc

mH








2

40,ˆ
,ˆ̂  

 
    

 
s

e
sc

e

se

sc HsHzs

Hs













 0,ˆ0

2

10,ˆ
 then: Applying the inverse in m, we get: 

 

     1
ˆ ˆc s, z c s,0 cos h sz sinh s z H

s
     

         s z H s z H s z H s z H1
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TABLE 2 
 

The values of the standard deviation of the wind direction in lateral and vertical directions for different stability classes 
 

Stability Classes A B C D E F 

σθ (deg) 25 20 15 10 5 2.5 

σø (deg) 10 8 6.5 5.5 2.5 1 

 
 
 
Finally applying the inverse in s yield 
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Substituting from (4) and (5) in (2) we obtain the 

solution in the form: 
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3. Case study  

 
The data set used was observed from the atmospheric 

diffusion experiments conducted at the northern part of 
Copenhagen, Denmark, under unstable conditions 
(Gryning and Lyck, 1984; Gryning et al., 1987). The 
tracer, sulfur hexafluoride (SF6) was released from a tower 
at a height of 115 m without buoyancy. The values of 
different parameters such as stability, wind speed at 10 m. 
(U10), wind speed at 115m (U115), and downwind 
distances are different at the same stability classes 
because of the measuring concentrations of SF6 at 
different downwind distances through the same stability 
classes during the experiment (Table 1). 
 
4.  Dispersion parameters schemes 

 

Since the Gaussian plume model is expressed           
in terms of the dispersion parameters σy and σz, 
appropriate selection of lateral and vertical dispersion 
parameters is much targeted. We select four different 
methods namely, Irwin, Power-Law, Brigg’s and Standard 
method, for calculating σy and σz to select the most 
accurate one. 

 

4.1.  Irwin method 
      

Irwin (Irwin, 1983) proposed the standard deviations 
of the lateral and vertical crosswind concentration 
distribution of pollutant σy and σz respectively, as   
follows: 

  yvy tfx     and                                                 (7) 

 
  zwz tfx                                                            (8) 

 
where, t is the travel time of the pollutant (sec) and 

equals to t = x/U115 
 
ƒy and ƒz are non-dimensional function of travel time 

and are given by Irwin (Irwin, 1983) as, 
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σv and σw are the standard deviation of the  wind 

speed in the lateral and vertical directions respectively. 
For small angles they can give as, 

 
σv = σθ.U115                                                                                            (11) 
 
and 
 
σw = σøU115                                                                                           (12) 
 
where σθ and σø are the standard deviations of the 

wind direction in lateral and vertical, respectively. 
Specifications of σθ and σø can be found in Gifford (1976) 
and Hanna  (1982). Based on the Pasquill stability classes 
from A to F, they are given in Table 2. 
 

So the values σy and σz are obtained by the following 
equations, 
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TABLE 3 
 

Brookhaven National Laboratory Parameters 
 

Stability Classes Moderately unstable (B1) Slightly unstable (B2) Neutral (D) Moderately stable (F)

a 0.36 0.40 0.32 0.31 

b 0.86 0.91 0.78 0.71 

c 0.33 0.41 0.22 0.06 

d 0.86 0.91 0.78 0.71 

 
 
 
 
 

TABLE 4 
 

Formulas produced by Briggs (1973) for σy (x) and σz (x) (102 < x < 104 m) 
 

Stability 
Classes 

Very unstable       
(A) 

Moderately unstable    
(B) 

Slightly unstable     
(C) 

Neutral            
(D) 

Slightly stable         
(E) 

Moderately stable     
(F) 

σy (x) 0.32x(1+0.0004x)-1/2 0.32x(1+0.0004x)-1/2 0.22x(1+0.0004x)-1/2 0.16x(1+0.0004x)-1/2 0.11x(1+0.0004x)-1/2 0.11x(1+0.0004x)-1/2 

σz (x) 0.24x(1+0.001x)1/2 0.24x(1+0.001x)1/2 0.20x 0.14x(1+0.0003x)-1/2 0.08x(1+0.00015x)-1/2 0.08x(1+0.00015x)-1/2 

 
 
 
 
 

TABLE 5 
 

Values of the dispersion parameters for the Pasqual stability classes 
 

Stability        
Classes 

Very unstable     
(A) 

Moderately unstable     
(B) 

Slightly unstable     
(C) 

Neutral     
(D) 

Slightly stable     
(E) 

Moderately stable      
(F) 

r (m/km) 250 202 134 78.7 56.6 37 

s (m/km) 102 96.2 72.2 47.5 33.5 22 

a (km) 0.927 0.370 0.283 0.707 1.07 1.17 

p 0.189 0.162 0.134 0.135 0.137 0.134 

q -1.918 -0.101 0.102 0.465 0.624 0.70 

 
 

 
 
 
σz(x) = σø x  For unstable condition,   (14) 
 
and 
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x
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x
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50U
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The final results of normalized crosswind-integrated 

concentration, Cy/Q (10-4 sm-2), after calculating σy and σz   
by using Irwin method, are presented in Table 6. 

4.2.  Power-Law method 
 
Smith (1968) worked out analytical Power-Law 

formulae for σy and σz to be used easily than using a graph 
or a table. He used the Brookhaven National Laboratory 
(BNL) formulas, which are defined by him using wind 
direction θ recorded over one hour as follows: 

 

A :  fluctuations of θ exceed 90°. (Very Unstable 
conditions) 

 
B1 :  fluctuations of θ from 40 to 90°. (Moderately 

Unstable) 
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TABLE 6 
 

The comparison between observed, at ground in diffusion experiment in northern part of Copenhagen, and different calculated crosswind-
integrated concentrations Cy/Q (10-4 m-2) obtained from the used dispersion schemes in the case of Gaussian 

 

Distance (x)     
(m) 

Stability Observed 
(C/Q) 

Calculated Irwin       
(C/Q) 

Calculated Power-Law       
(C/Q) 

Calculated Briggs 
(C/Q) 

Calculated Standard      
(C/Q) 

1900 A 6.48 2.54 4.67 6.70 1.1E-07 

3700 A 2.31 1.31 1.68 2.73 1.6E-08 

2100 C 5.38 9.33 6.03 4.57 2.086 

4200 C 2.95 4.67 2.84 2.36 1.119 

1900 B 8.2 3.63 4.09 5.86 0.127 

3700 B 6.22 1.87 1.47 2.39 0.061 

5400 B 4.3 1.28 0.82 1.40 0.040 

4000 C 11.7 2.50 5.87 1.82 0.597 

2100 C 6.72 5.91 9.51 7.22 1.320 

4200 C 5.84 2.95 4.48 3.72 0.708 

6100 C 4.97 2.03 2.92 2.58 0.506 

2000 C 3.96 14.40 4.31 3.26 3.202 

4200 C 2.22 6.86 1.93 1.60 1.645 

5900 C 1.33 4.88 1.31 1.15 1.212 

2000 B 6.7 5.90 2.21 1.40 0.206 

4100 B 3.25 2.88 0.74 3.01 0.093 

5300 B 2.23 2.23 0.50 1.17 0.070 

1900 D 4.16 11.81 10.62 9.93 53.703 

3600 D 2.02 6.23 8.25 7.64 38.173 

5300 D 1.52 4.23 6.18 6.39 31.044 

2100 C 4.58 9.72 5.79 4.40 2.171 

4200 C 3.11 4.86 2.73 2.26 1.165 

6000 C 2.59 3.40 1.81 1.59 0.846 

 
 
 

TABLE 7 
 

Comparison among different models according to standard statistical performance measure 
 
 

Case Models NMSE FB COR FAC2 

Irwin method 0.74 -0.02 -0.10 1.39 

Power-Law method 0.54 0.21 0.32 1.02 

Briggs method 0.68 0.19 0.09 1.06 
Gaussian model 

Standard method 6.80 0.13 -0.35 2.01 
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Fig. 1. The relation between the downwind distances and the observed and predicted concentrations of SF6 in Gaussian 

 
 
 

 
B2 :  fluctuations of θ from 15 to 40°. (Slightly 

Unstable) 
 
C :  fluctuations of θ greater than 15° with strip 

chart showing an unbroken solid core in the 
trace. (Neutral) 

 
D :  Trace in a line, short-term fluctuations in θ 

less than 15° (Moderately stable). 
 
He summarized the BNL formulas which are based 

on hourly average measurements of diffusion to about        
10 km of a no buoyant plume released from a height of 
108 m: 

 
σy = axb                                                                  (16) 
 
σz = cxd                                                                                                      (17) 
 
Values of the parameters a, b, c, and d are given in 

Table 3. 

Because of the absence of the Very Unstable 
condition in the solution of Smith (1968), here we use 
values of the Moderately Unstable condition parameters to 
calculate cases of the Very Unstable condition. The final 
results of crosswind-integrated concentration Cy/Q            
(10-4 sm-2), after calculating σy and σz by using Power-
Law method, are presented in Table 6. 

 
4.3.  Briggs method 
 
Briggs (1973) used theoretical concepts of the 

related formulas to get set of formulas that can be used in 
common practices. According to these formulas σy and σz 
is proportional to x at all stability conditions. Also σy and 
σz are independent of release height and roughness in 
these formulas. The values of σy and σz in urban 
conditions are given in Table 4. 
 

The final results of crosswind-integrated 
concentration Cy/Q (10-4 sm-2) after calculating σy and σz 
by using Briggs method are presented in Table 6. 
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Fig. 2. Relation between observed and calculated concentrations for different Gaussian models 

 
 

 
4.4.  Standard method 
 
In this method, σy and σz can be analytically 

expressed, based on (P-G) curves, using the following 
forms: 

 

y p

r

1
a

 
  
 

x

x
  and                                             (18) 

 

z q
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1
a

 
  
 

x

x
                                                     (19) 

 
where r, s, a, p, and q are constants depending on the 

atmospheric stability. Their values are given in Table 5. 
 

The final results of crosswind-integrated 
concentration Cy/Q (10-4 sm-2) after calculating σy and σz 
as estimated using Standard method are given in Table 6. 

 
5. Comparison between the used methods 
 

In this section, we compare between the final results 
obtained using the five different schemes. We look for 

which is the most optimum method to be used. Fig. 1 
shows the relation between the observed and calculated 
crosswind concentrations of the tracer sulfur hexafluoride 
(SF6) with downwind distances from continuous source. 
 

In Fig. 1, we can notice that the observed 
concentrations line is not nearby any one identified line. 
So each model has some points near the observed results 
while the others are not. In the Fig. 2, we plot the 
normalized crosswind concentrations calculated using 
different Gaussian models versus the observed 
concentrations. 
 

In Fig. 2, we can observe that the Standard method 
graph-line is almost near zero line. But it is still difficult 
to know which is the most accurate among Gaussian, 
Power, Briggs, Irwin methods. 
 
 

5.1.  Statistical method 
 

Here we try to know which method’s results are the 
nearest to the observed concentrations. So to solve this 
problem, we have used the following standard statistical 
performance measures that characterize the agreement 
between model prediction (Cp = Cpred/Q) and 
observations (Co=Cobs/Q) by Willmott (1981). 
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Normalized Mean Square Error (NMSE)  
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Fractional Bias (FB) 
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Correlation Coefficient (COR) 
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Factor of two (FAC2) = 0.25.0 
o

p

C

C
               (23) 

 
Where σp and σo are the standard deviations of Cp and 

Co respectively. Here the over bars indicate the average 
over all measurements (Nm). A perfect model would have 
the following idealized performance: 
 

NMSE = FB = 0 and COR = FAC2 = 1.0 
 

From the statistical method, in the Gaussian model, we 
find that the Irwin, Power Law and Briggs are factors of 2 
with observed data. Regarding NMSE, the mentioned 
methods can be considered as good models except for 
standard method which is relatively far away. Irwin 
method is the best relating to FB, while the Power Law 
and Standard method have the best correlation with 
observed data (Table 7).  
 
6. Conclusion 

 
Gaussian plume model of advection diffusion 

equation is solved in three dimensions by using Laplace 
transformation considering wind speed and eddy 
diffusivity are constants. Different schemes such as Irwin, 
power law, Briggs, and Standard method are used to 
obtain crosswind integrated concentration. Also wind 
speed in Power Law, plume rise are used in this work. We 
used observed Normalized concentration data for sulfur 
hexafluoride (SF6) from the atmospheric diffusion 
experiments conducted at the northern part of 
Copenhagen, Denmark, under unstable conditions to 
compare with predicted concentration data using different 
schemes of dispersion parameters. 

 
Each model has some points near the observed 

results while the others are not. It is difficult to know 

which is the most accurate among Gaussian, Power, 
Briggs, Irwin methods. 

 
In the Gaussian model, we find that the Irwin, Power 

Law and Briggs are factors of two with observed data. 
Regarding NMSE, the mentioned methods can be 
considered as good models except for Standard method 
which is relatively far. Irwin method is the best relating to 
FB, while the Power Law and Standard methods have the 
best correlation with observed data.  
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