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lkj & इस शोध पत्र का मख् यु  उƧेæ य पवन गित का पावर लॉ और चक्रवात िवसरणशीलता के 

िवÛ यास का उपयोग करते हए अिè थु र दशा म िपÍ छɅ क िवसजर्न प्राचलɉ का पािæ वर्क िदशा (σy) तथा 
उÚ वार्धर िदशा (σz) म आकलन करना है। इसम हमारे मॉडल और अã जेɅ Ʌ ब्रीक (लीिडयन बिलगु न आदी, 
2008) एवं इंटीग्रल (पासक् वील और è मीथ 1983) सत्रɉ की तलना की गई है । हम पता चला है िक हमारे ू ु Ʌ
मॉडल और अÛ य दो मॉडल, पे्रिक्षत िकए गए डटेा के अनǾप ह।ु ɇ  

 
ABSTRACT.  The main objective of this paper is to estimate the plume dispersion parameters in lateral (σy) and 

vertical (σz) direction by using power law of wind speed and the scheme of eddy diffusivity in unstable condition. 
Comparison among our model and algebraic (Lidiane Buligon et al., 2008) and integral (Pasquill and Smith, 1983) 
formulations were made. We find that besides our model two other models are in agreement with observed data. 
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1.  Introduction 
 

The study and employment of operational short–
range atmospheric dispersion models for environmental 
impact assessment have demonstrated to be of wide use in 
the evaluation of ecosystems perturbation in many distinct 
scales, (Meyer and Diniz, 2007). 

 
 In operational applications, the classical Gaussian 
diffusion models are largely employed in assessing the 
impacts of existing and proposed sources of air 
contaminants on local and urban air quality (Arya, 1999). 
Simplicity, associated with the Gaussian analytical model, 
makes this approach particularly suitable for regulatory 
usage in mathematical modeling of the air pollution, such 
models are quite useful in short term forecasting. The 
lateral and vertical dispersion parameters, respectively σy 
and σz represent the key turbulent parameterization in this 
approach.  They contain the physical parameters that 
describe the dispersion process and, consequently, express 
the spatial extent of the contaminant plume under the 
effect of the turbulent motion in the planetary boundary 
layer (PBL) (Abdul-Wahab, 2006).  
 

    In this work, we estimated the schemes of  
dispersion parameters in the lateral direction (σy) and the 

vertical direction (σz) in unstable conditions  by using 
wind speed in power law and comparing between our 
work and (algebraic and integral formulations) with 
observed data of sulfur hexafluoride (SF6) taken from 
Copenhagen in Denmark. 
 
2. Model formulation 

 
The concentration associated from point source of 

strength Q, is expressed as (Akula Venkatram 2004): 
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where, 
 
C is the average concentration of diffusing point       

(x, y, z) (kg/m3), 
 
U is mean wind velocity along the x-axis (m/s), 
 
x is along-winds coordinate measured in wind 

direction from the source (m),  
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y is cross-wind coordinate direction (m), 
 
z is vertical coordinate measured from the        

ground (m) and 
 
σy is the plume dispersion parameter in the lateral 

directions. 
 
where, the value of the parameter, s, depends on the 

stability (s = 0.75 and A = 1.42 in unstable case, (Sven – 
Erik et al., 1983). 

 

The mean plume height, Z , is defined by  
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and the mean plume velocity, U , is defined by  
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We assume that the mean wind speed, U (z), can be 

described by a power law so that: 
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Ur is a reference velocity at height Zr, the value of 

the power, p, lies between 0.15 and 0.20 in unstable case 
(Irwin, 1979).  

 
Let, B, be a non-zero constant, then taking: 
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Substitution from equations (1) and (5) in equation 

(2) one gets: 
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where, Г (p) is the gamma function. 

Substituting from equations (4), (1) and                   
(5) in equation (3), we obtain the mean plume         
velocity: 
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Van Ulden (1978) shows that the mean plume 

height, ,Z  can be calculated from: 
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and 
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where K(z) is the eddy diffusivity parameterization 

that is led to the K- theory assumption. 
  
According to Pleim and Chang (1992), the form of 

K(z) in an unstable case is: 
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where, k is the von Karman constant which is set to 

0.4 , is the convection scaling parameter and h is the 

effective height of release above the ground estimated 
from (Briggs, 1969): 

*w

 
h = hs+ Δ h  
 
where hs is physical stack height (115 m). 
 
Δ h = 3 (W/U115) D 
 
where, W is the exit velocity (4 m/s)  
 
D is the internal stack diameter (1 m) and  
 
U115 = U10 (hs /10)P 
 
U10 is the wind speed at 10 m height. 
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Substituting from equations (4), (10) in equation (8) 
and integrating equation (8), we obtain the mean plume 

height Z : 
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Substituting from equation (11), in equation (7), we 

obtain the mean plume velocity U : 
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(12)  
We estimate the horizontal spread σy using Eckman’s 

(1994) hypothesis that 
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where,  
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where,  σv is the standard deviation of the wind speed 

in the lateral direction. 
 
By Integrating the equation (13) with respect to x, 

we obtain the plume dispersion parameter in the lateral 
direction (σy) as follows: 
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Also estimating the vertical spread σz using 
Eckman’s (1994) hypothesis that : 
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(15)                        
 
where,  σw is the standard deviation of the wind 

speed in the vertical direction. Integrating equation (15) 
with respect to x, we obtain the plume dispersion 
parameter in the vertical direction (σz ) as follows: 
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Then Gaussian expressions for the ground crosswind 

-integrated concentration and the normalized             
ground-level concentration along the plume          
centerline respectively are given by (Arya, 1999) on the 
forms: 
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 From the previous works, the plume dispersion 

parameters in the vertical and lateral directions (σz and σy) 
respectively are given by Lidiane et al. (2008) in the form: 
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TABLE 1  
 

Observed and model ground-level centerline concentration C (x, 0, 0)/Q at different distances, wind speed and effective height from the source 
 

C(x,0,0)/Q (s/m2) 
Run no. h(m) U115 

distance 
(x) (m) 

W* 
C(x,0,0)/Q 

(s/m2) 
Observed 

Our model 
Equations (14), (16), (18)

Previous work equations 
(19), (20), (18) 

Previous work equations 
(21), (22), (18) 

1 119 3 1900 1.8 10.5 8.61 5.34 6.37 

1 119 3 3700 1.8 2.14 7.42 2.17 2.55 

2 117 8 2100 1.8 9.85 5.55 7.67 8.71 

2 117 8 4200 1.8 2.83 1.80 2.93 3.48 

3 118 4 1900 1.3 16.33 14.56 13.74 15.87 

3 118 4 3700 1.3 7.95 5.77 5.95 6.98 

3 118 4 5400 1.3 3.76 1.09 3.72 4.32 

5 117 5 2100 0.7 15.71 15.49 17.51 19.36 

5 117 5 4200 0.7 12.11 10.49 20.94 21.73 

5 117 5 6100 0.7 7.24 4.94 11.49 13.14 

6 116 11 2000 2 4.75 5.43 7.52 8.69 

6 116 11 4200 2 7.44 2.94 8.02 8.91 

6 116 11 5900 2 3.37 8.29 3.24 3.8 

7 117 7 2000 2.2 1.74 2.74 2.07 2.44 

7 117 7 4100 2.2 9.48 9.78 5.55 6.54 

7 117 7 5300 2.2 2.62 4.12 2.03 2.41 

8 117 7 1900 2.2 1.15 1.74 1.44 1.7 

8 117 7 3600 2.2 9.76 3.22 8.43 9.62 

8 117 7 5300 2.2 2.64 1.96 4.06 4.69 

9 116 8 2100 1.9 0.98 3.34 2.59 2.96 

9 116 8 4200 1.9 8.52 1.52 6.86 7.85 

9 116 8 6000 1.9 2.66 6.75 2.55 3.04 

 
 

 
Also, the plume dispersion parameters in the vertical 

and lateral directions (σz and σy ) respectively are given by 
Pasquill and Smith (1983) as follows: 
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3. Results and discussion 
 

The data set used was observed from the atmospheric 
diffusion experiments conducted at the northern part of 
Copenhagen, Denmark, under unstable conditions 

(Gryning and Lyck, 1984; Gryning et al., 1987). The 
tracer sulfur hexafluoride (SF6) was released from a tower 
at a height of 115 m without buoyancy. There are two 
Gaussian models, The First is measured at ground surface 
and the other at the plume centerline. In this work, there 
are three predicated normalized concentrations (our model 
and two previous models) as shown in Tables (1&2). 

 
Fig. (1&2) show that the observed and predicated 

scatter diagram of crosswind integrated concentrations of  
centerline and ground level respectively  using Gaussian 
model with vertical and lateral dispersion parameters 
given by [Equations (14) and (16), our model] and 
[Equations (19), (20), algebraic formulation], [Equations 
(21), (22),  integral formulation] respectively. From the 
two figures one finds that there are some predicated data 
which are in agreement with observed data (one to one) 
and others lie inside the factor of two. 
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TABLE 2 
 

Observed and model ground-level concentration Cy (x, 0)/Q at different distances, wind speed and effective height from the source 
 

C (x, 0)/Q (s/m2) Run 
no. 

h (m) U115 
distance (x) 

(m) 
W* 

C(x, 0)/Q 
(s/m2) 

Observed 
Our model Equations

(16), (17) 
Previous work 

Equations (19), (17) 
Previous work 

Equations (21), (17) 

1 119 3 1900 1.8 6.48 3.72 6.06 6.58 

1 119 3 3700 1.8 2.31 4.61 3.96 4.28 

2 117 8 2100 1.8 5.38 4.66 3.64 3.79 

2 117 8 4200 1.8 2.95 2.46 2.48 2.68 

3 118 4 1900 1.3 8.2 7.92 7.35 7.72 

3 118 4 3700 1.3 6.22 1.23 5.22 5.6 

3 118 4 5400 1.3 4.3 2.21 4.22 4.52 

5 117 5 2100 0.7 6.72 8.24 8.54 8.77 

5 117 5 4200 0.7 5.84 2.63 6.04 5.71 

5 117 5 6100 0.7 4.97 4.65 5.73 5.96 

6 116 11 2000 2 3.96 3.30 4.9 5.19 

6 116 11 4200 2 2.22 4.41 3.14 3.18 

6 116 11 5900 2 1.83 1.06 2.31 2.47 

7 117 7 2000 2.2 6.7 4.63 1.9 2.04 

7 117 7 4100 2.2 3.25 1.09 3.69 4.25 

7 117 7 5300 2.2 2.23 1.48 2.14 2.73 

8 117 7 1900 2.2 4.16 5.16 4.12 2.31 

8 117 7 3600 2.2 2.02 2.91 3.12 4.28 

8 117 7 5300 2.2 1.52 2.50 2.56 3.31 

9 116 8 2100 1.9 4.58 3.04 3.53 2.71 

9 116 8 4200 1.9 3.11 2.19 2.34 3.7 

9 116 8 6000 1.9 2.59 4.04 1.85 2.54 

 

 
 

4. Statistical method 
 
 Now, the statistical method is presented and 
comparison among analytical, statistically and observed 
results will be presented (Hanna, 1989). The following 
standard statistical performance measures that characterize 
the agreement between prediction (CP = Cpred/Q) and 
observations (Co = Cobs/Q): 
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where, σP and σo are the standard deviations of Cp 

and Co respectively. Here the over bars indicate the 
ge over all measurements (Nm). A perfect model 

oul
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w d have the following idealized performance:       

 
NMSE = FB = 0 and COR = FAC2 = 1.0 
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Fig. 1. Observed and predicated ground crosswind integrated centerline concentration, normalized with
emission Cy (x, 0, 0)/Q : scatter diagram for the solution of equation (18) using equations (14), (16)

 
 

 
, 

(19), (20), (21) and (22) 

 

 
 

Fig. 2. Observed and predicated ground crosswind integrated concentration, normalized with emission C
(x, 0)/Q : scatter diagram for the solution of equation (17) using equations (16), (19) and (21) 

 
 

rom the statistical method of Table (3), we find that 
the predicted concentrations for all models lie inside 
factor of 2 with observed data. Regarding NMSE, we find 

that two previous works are better than our model.  
Regarding FB and correlation coefficient all models are in 
agreement with observed data.  

y 

 

 
F
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TABLE 3 
 

 Comparison between different models ground – level cen ine concentration C(x, 0, 0)/Q and observed concentrations trel

Predicted models C (x, 0, 0)/Q NMSE FB COR FAC2 

 

Our model Equations (14), (16), (18) 0.28 0.12 0.72 1.22 

Prev  

Pr ) 

ious work Equations (19), (20), (18) 0.18 -0.02 0.83 1.12 

evious work Equations (21), (22), (18 0.18 -0.14 0.86 1.28 

 
 

TABLE 
 

Comparison between different models ground – level concentration C(x, 0,)/Q and observed concentrations 
 

Predicted models Cy (x, 0)/Q SE FB COR FAC2 

4 

NM

Our model Equations (16), (17) 0.13 0.07 0.90 1.09 

Pre  

Pr ) 

vious work Equations (19), (17) 0.11 0.03 0.72 1.05 

evious work Equations (21), (17 0.14 -0.03 0.64 1.15 
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5. Conclusion 
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	Now, the statistical method is presented and comparison among analytical, statistically and observed results will be presented (Hanna, 1989). The following standard statistical performance measures that characterize the agreement between prediction (CP = Cpred/Q) and observations (Co = Cobs/Q):
	TABLE 3
	 Comparison between different models ground – level centreline concentration C(x, 0, 0)/Q and observed concentrations
	Predicted models C (x, 0, 0)/Q
	NMSE
	FB
	COR
	FAC2
	0.28
	0.12
	0.72
	1.22
	0.18
	-0.02
	0.83
	1.12
	0.18
	-0.14
	0.86
	1.28
	TABLE 4
	Comparison between different models ground – level concentration C(x, 0,)/Q and observed concentrations
	Predicted models Cy (x, 0)/Q
	NMSE
	FB
	COR
	FAC2
	Our model Equations (16), (17)
	0.13
	0.07
	0.90
	1.09
	0.11
	0.03
	0.72
	1.05
	0.14
	-0.03
	0.64
	1.15

