A neural network model for short term prediction of surface ozone at Pone
DOI:
https://doi.org/10.54302/mausam.v50i1.1809Keywords:
Air Pollution, Neural network, Surface ozone, Short term predictionAbstract
A new method for short term prediction of air pollution is presented using the neural network technique, Due to increase in industrial and anthropogenic activity, air pollution is a serious subject of concern today, Surface ozone can be considered as a representative of total atmospheric oxidants and of air pollution, A three layer neural network model using the technique of adaptive pattern recognition is developed, The model can predict the mean surface ozone between 12 and 13 hours (hour of maximum concentration), The model can perform well both in training and independent periods, The classical methods of short term modelling are not reliable enough, The method can also be used for short term prediction of other air pollutants.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MAUSAM
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All articles published by MAUSAM are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone.
Anyone is free:
- To Share - to copy, distribute and transmit the work
- To Remix - to adapt the work.
Under the following conditions:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even
commercially.