Computation of synthetic seismogram in real earth model by eigen function expansion
DOI:
https://doi.org/10.54302/mausam.v67i3.1385Keywords:
Seismogram, Eigen function, Love wave, Rayleigh wave, Real earthAbstract
The method of eigen function expansion has been used in the present study to compute synthetic or theoretical seismogram in layered elastic half-space of real earth model. Simple dislocation source model has been considered. The transverse (SH) or radial and vertical (P-SV) components of displacement field have been computed as summed modes and compared by using both exact and numerical techniques. The methods used in the study, include exact evaluation by propagator matrix approach using Reflection-Transmission coefficients as well as numerical computations using Runge-Kutta method of order 4. The specialty of the present study is to evaluate approximate displacement field for the earth models with homogeneous and / or inhomogeneous layers. The normalization technique has been used in the study to control the overflow errors. The study has an advantage to get an idea of earth structure or source model by an inverse iterative technique.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MAUSAM
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All articles published by MAUSAM are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone.
Anyone is free:
- To Share - to copy, distribute and transmit the work
- To Remix - to adapt the work.
Under the following conditions:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even
commercially.