Progress of Indian summer monsoon onset and convective episodes over Indo-Pacific region observed during 2009-2014
DOI:
https://doi.org/10.54302/mausam.v67i4.1409Keywords:
Monsoon onset, ITCZ, Intense disturbances, OLRAbstract
Summer monsoon onset progress from the oceanic region of Southeast Bay of Bengal / Andaman Sea (Oceanr) up to extreme southwestern part of India (Kerala) for the years 2009 to 2014 is investigated. Synoptic weather information, INSAT/KALPANA-1 as well as cloud imageries archived from Dundee Satellite Receiving Station for May and early June for these years are used in the analysis. Upper-air reanalyzed winds from NCEP/NCAR and OLR data archived through NOAA satellites are also used. During the study period, the dates of monsoon onset as well as the time required for the advancement of onset from Oceanr to Kerala have shown a large variation. An attempt is made to investigate the causes for such variations. The results indicate that intense disturbances which formed over north Indian Ocean in 2009, 2010, 2013 and 2014 and over west-north Pacific Oceanic region in 2011 and 2012 have contributed for the same. Analysis is carried out, limiting its focus to bring out the role of these convective events in the observed variation of onset timing and its progress by taking case to case review of these events and bringing out their influence through synoptic analysis. Utility of this information in prediction of the progress of Indian summer monsoon onset is also brought out.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MAUSAM
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All articles published by MAUSAM are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone.
Anyone is free:
- To Share - to copy, distribute and transmit the work
- To Remix - to adapt the work.
Under the following conditions:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even
commercially.