Agro-meteorology of Indian Brassicas
DOI:
https://doi.org/10.54302/mausam.v53i1.1619Keywords:
Brassica, Temperature, Rainfall, Sunshine, Relative humidity, Biomass, LAI, Seed yield, Yield attributes, Vegetative phase, Reproductive phase, Maturity phaseAbstract
Field experiment was conducted for two crop seasons (1996-97 & 1997-98) at CCS, HAU, Hisar research farm to study the effect of weather parameters on growth and yield of mustard. The results indicated that an increase in maximum temperature and duration of sunshine hours resulted in increased leaf area index (LAI). The increase in daytime temperature resulted in higher biomass accumulation during vegetative phase, but the trend was reversed during physiological maturity. The biomass accumulation in brassicas increased with increase in evaporation rate during the grand growth period. However, latter on during the physiological maturity, increase in evaporation rate resulted in decline of biomass accumulation. Further, it was noted that the magnitudes of some important weather parameters (maximum and minimum temperatures, pan evaporation and morning relative humidity) during the vegetative phase of crop played decisive role in deciding the quantum of seed yield which is a resultant of various yield attributes. The rainfall during the crop growing season either have no association or had a negative relationship with yield and yield attributes because crop never experienced water stress as abundant moisture was made available through irrigation.Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MAUSAM
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All articles published by MAUSAM are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone.
Anyone is free:
- To Share - to copy, distribute and transmit the work
- To Remix - to adapt the work.
Under the following conditions:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even
commercially.