Short term prediction of atmospheric temperature using neural networks
DOI:
https://doi.org/10.54302/mausam.v53i4.1662Keywords:
Neural networks, Backpropagation, Atmospheric science, Temperature forecastingAbstract
In this paper, a neural network based forecasting model for the maximum and the minimum temperature for the ground level is proposed. A backpropagation method of gradient-decent learning in multi-layer perceptron (MLP) type of neural network with only one hidden layer is considered. This network consists of 25 input nodes and two output nodes. The network is trained with a varying number of nodes in the hidden layer using a set of training sample and each of them is tested with a set of test sample. It accepts previous two consecutive days information (such as pressures, temperatures, relative humidities, etc.) as inputs for the estimation of the maximum and the minimum temperature as output. The network with 20 or less neurons in the hidden layer is found to be "optimum" and it produces an error within ±2° C for 80% of test cases.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MAUSAM
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All articles published by MAUSAM are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone.
Anyone is free:
- To Share - to copy, distribute and transmit the work
- To Remix - to adapt the work.
Under the following conditions:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even
commercially.