Relation between total ozone and sub-tropical jet stream
DOI:
https://doi.org/10.54302/mausam.v50i2.1847Keywords:
Subtropical jet stream, Potential vorticity, Total ozoneAbstract
This article investigates the relationship between total ozone and subtropical jet stream (STJ). Total ozone data have been obtained from the total ozone mapping spectrometer (TOMS) instrument on the Nimbus - 7 satellite and have been examined in conjunction with meteorological data in the region 90°- 160°E, 20° -50°N, i.e., the entrance region of the East Asian STJ from October 1982 to September 1983.
The STJ marks the boundary between the high tropical tropopause (ca. 1000 hPa) and lower subtropical tropopause (ca. 200 hPa). In winter it has been found that the total ozone contours are almost parallel to the wind direction, and the horizontal gradient in total ozone increases as the wind speed strengthens.
The STJ normally marks a steep gradient in total ozone but in spring anomalous patterns are seen sometimes with very small gradients across the jet. A particular study has been conducted of these events, which are associated with a layer of relatively low but still stratospheric potential vorticity (PV) at around 150 hPa (380K) on the poleward side of the jet. This appears to be consistent with a transfer of air from troposphere to stratosphere above the jet core in March and April.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MAUSAM
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All articles published by MAUSAM are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone.
Anyone is free:
- To Share - to copy, distribute and transmit the work
- To Remix - to adapt the work.
Under the following conditions:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even
commercially.