Comparison of different artificial neural network (ANN) training algorithms to predict the atmospheric temperature in Tabuk, Saudi Arabia
DOI:
https://doi.org/10.54302/mausam.v71i2.22Keywords:
Artificial neural network, Atmospheric temperature, Prediction, Tabuk, Training algorithmsAbstract
Use of Artificial neural network (ANN) models to predict weather parameters has become important over the years. ANN models give more accurate results in weather and climate forecasting among many other methods. However, different models require different data and these data have to be handled accordingly, but carefully. In addition, most of these data are from non-linear processes and therefore, the prediction models are usually complex. Nevertheless, neural networks perform well for non-linear data and produce well acceptable results. Therefore, this study was carried out to compare different ANN models to predict the minimum atmospheric temperature and maximum atmospheric temperature in Tabuk, Saudi Arabia. ANN models were trained using eight different training algorithms. BFGS Quasi Newton (BFG), Conjugate gradient with Powell-Beale restarts (CGB), Levenberg-Marquadt (LM), Scaled Conjugate Gradient (SCG), Fletcher-Reeves update Conjugate Gradient algorithm (CGF), One Step Secant (OSS), Polak-Ribiere update Conjugate Gradient (CGP) and Resilient Back-Propagation (RP) training algorithms were fed to the climatic data in Tabuk, Saudi Arabia. The performance of the different training algorithms to train ANN models were evaluated using Mean Squared Error (MSE) and correlation coefficient (R). The evaluation shows that training algorithms BFG, LM and SCG have outperformed others while OSS training algorithm has the lowest performance in comparison to other algorithms used.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MAUSAM
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All articles published by MAUSAM are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone.
Anyone is free:
- To Share - to copy, distribute and transmit the work
- To Remix - to adapt the work.
Under the following conditions:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even
commercially.