A model study of the 30-50 day oscillation In the tropical atmosphere
DOI:
https://doi.org/10.54302/mausam.v42i3.3189Keywords:
30-50 day oscillation, wave-CISK, moisture availability factor, moist Kelvin wave, Rossby wave, primitive equation global spectral model, analytical two-level modelAbstract
Using a global spectral model with wave-CISK formulation we have generated an eastward de which. Resembles the observed 30-50 day mode. This has a scale of global wave number one and two years structure in the vertical. It has the structure of a composite of Kelvin and Rossby waves. This composite system moves eastwards.
We have also studied a linear two-level analytical model to understand the nonlinear spectral model response. In the linear as well as in the nonlinear spectral model, as we Increase the moisture availability factor the speeds of the waves decrease. In the linear model this speed is found to be independent of drag for all types of waves. In the nonlinear spectral model for a given drag there is a critical value of the moisture availability factor for which the wave becomes stationary and beyond which even shows westward propagation. Thus both moisture availability and nonlinearity appear to contribute to the slow eastward speed of the equatorial 30-50 day mode.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MAUSAM
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All articles published by MAUSAM are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone.
Anyone is free:
- To Share - to copy, distribute and transmit the work
- To Remix - to adapt the work.
Under the following conditions:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even
commercially.