Variation of aerosol optical thickness with atmospheric water vapour : A case study over a continental station Mysore, India
DOI:
https://doi.org/10.54302/mausam.v62i3.322Keywords:
Atmospheric aerosols, Atmospheric water vapour, AOT, SunphotometerAbstract
Atmospheric measurements in a continental, low latitude station Mysore (12.3° N) has been carried out, for the period December 2003 to June 2006. Measurements were made using a sunphotometer with five bands in the visible and near-infrared range of the solar spectrum. To bring out the wavelength dependence of Aerosol Optical Thickness (AOT) on atmospheric water vapour, typically two wavelength channels are being used, one at 500 nm and the other at 1020 nm. A linear dependence between AOT and water vapour on meteorologically calm days is the important observation made. Growth rate of AOT is found to be larger at shorter wavelength (500 nm) than that of the longer wavelength (1020 nm). A mass-plot representation is followed on monthly basis, which is nothing but the graphical plot of spectral AOT versus water vapour of the scans for all the clear sky days of a particular month. Further investigations reveal that some months exhibit a single trend of growth of AOT with water vapour whereas double trend is the scenario for other months. These results provide insight into the changes in the atmospheric aerosol characteristics with precipitable water vapour, which is the subject matter of this paper.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MAUSAM
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All articles published by MAUSAM are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone.
Anyone is free:
- To Share - to copy, distribute and transmit the work
- To Remix - to adapt the work.
Under the following conditions:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even
commercially.