Does precipitation pattern foretell climatic shift over Punjab state ?
DOI:
https://doi.org/10.54302/mausam.v46i3.3292Keywords:
Auto-correlation,, Frequency distribution, Persistence, Periodicity, Red-noise, Spectrum analysis,, Trend, White-noiseAbstract
ABSTRACT. Statistical analysis of 82-years (1901-1982) record of precipitation from 27 rain-recording stations in Punjab state of lndia has been carried out to assess the climate shift if any in the state. The central part of the study is the trend and spectrum analysis of annual. monsoon and winter rainfall of different stations in the region. It is seen that frequency distribution of 19 rainfall series out of 81 series is normally distributed. Maikov linear type of persistence is observed in some of the rainfall series. Marin-Kendall test indicates the decreasing trend in winter rainfall of all the stations and is found to be significant in case of Amritsar, Taran Taran, Tanda, Ludhiana and Ranike. Low-pass filter reveals that trend is not linear but oscillatory consisting of periods of 10 years or more. It is seen that winter rainfall of most of the stations exhibits the decreasing trend from 1935-40 to 1965-70. It is also revealed by the low-pass filter curves that winter rainfall of all t1le sla1ions remained below average from 1960 till the end of the study period.
The spectral analysis indicates a significant cycle of 4.1 to 27 years in some of the stations and Quasi-Biennial Oscillations (QBO) over many stations.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MAUSAM
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All articles published by MAUSAM are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone.
Anyone is free:
- To Share - to copy, distribute and transmit the work
- To Remix - to adapt the work.
Under the following conditions:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even
commercially.