A Markov chain model for daily rainfall occurrences at east Thanjavur district
DOI:
https://doi.org/10.54302/mausam.v46i4.3305Keywords:
Markov chain, Probability, Dry and wet days, Matrix, MonsoonAbstract
The occurrences and non-occurrences of the rainfall can be described by a two-state Markov chain. A dry date is denoted by state 0 and wet date is denoted by state 1. We have taken the sample which follows a Poisson process with known parameter. Using this Poisson sample we have given a new approach to affect statistical inference for the law of the Markov chain and state estimation concerning un-observed past values or not yet observed future values. The paper aims at comparing the earlier fit of the data with the new approach.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MAUSAM
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All articles published by MAUSAM are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone.
Anyone is free:
- To Share - to copy, distribute and transmit the work
- To Remix - to adapt the work.
Under the following conditions:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even
commercially.