Growth of random errors in temperature forecasts by numerical method using centred time-differences
DOI:
https://doi.org/10.54302/mausam.v22i1.3979Abstract
The growth of initial random errors in temperature forecasts by numerical method using centred time-differenced is investigated. Horizontal advection in one dimension is considered. Assuming that there is no correlation between the initial random errors as the different grid points and neglecting any correlation that may develop in the col1rse of computation, the random errors grow much more rapidly in this method than in forward time differencing. In both methods, correlations develop between the random errors at different grid points in the course of computation. When these are taken in to account, the growth of random errors is further enhanced in the forward differences. In the centred time-differences method, these correlations keep the random error almost at the initial level.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MAUSAM
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All articles published by MAUSAM are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone.
Anyone is free:
- To Share - to copy, distribute and transmit the work
- To Remix - to adapt the work.
Under the following conditions:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even
commercially.