SolarisNet : A deep regression network for solar radiation prediction
DOI:
https://doi.org/10.54302/mausam.v71i3.44Keywords:
Deep neural network, Gaussian process regression (GPR), Global solar radiation (GSR), Forecasting, Time series, MeteorologyAbstract
Effective utilization of photovoltaic (PV) plants requires weather variability robust global solar radiation (GSR) forecasting models. Random weather turbulence phenomena coupled with assumptions of clear sky model as suggested by Hottel pose significant challenges to parametric &non-parametric models in GSR conversion rate estimation. Also, a decent GSR estimate requires costly high-tech radiometer and expert dependent instrument handling and measurements, which are subjective. As such, a computer aided monitoring (CAM) system to evaluate PV plant operation feasibility by employing smart grid past data analytics and deep learning is developed. Our algorithm, SolarisNet is a 6-layer deep neural network trained on data collected at two weather stations located near Kalyani metrological site, West Bengal, India. The daily GSR prediction performance using SolarisNet outperforms the existing state of art and its efficacy in inferring past GSR data insights to comprehend daily and seasonal GSR variability along with its competence for short term forecasting is discussed.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MAUSAM
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All articles published by MAUSAM are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone.
Anyone is free:
- To Share - to copy, distribute and transmit the work
- To Remix - to adapt the work.
Under the following conditions:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even
commercially.