Regional frequency analysis of daily maximum rainfall in Haryana
DOI:
https://doi.org/10.54302/mausam.v72i4.531Keywords:
Regional frequency analysis, Daily maximum rainfall, L-moments, return period, quantilesAbstract
This paper is sets-out for the regional frequency analysis of daily maximum rainfall from the 27 rain gauge stations in Haryana using L-moments. As the distribution of rainfall varies spatially in Haryana, the 27 rain gauge stations are grouped into three clusters namely, cluster C1, C2 and C3 using Ward’s clustering method and homogeneity of clusters was confirmed using L-moments-based Heterogeneity measure (H). Using goodness-of-fit measure ( DIST Z ) and L-moment ratios diagram, suitable regional frequency distributions were selected among five candidate distributions;
Generalized Logistic (GLO), Generalized Extreme Value (GEV),Generalized Normal (GNO), Generalized Pareto (GPA), and Pearson Type-3 (PE3) for each cluster. Results showed that PE3 and GNO were good fitted regional distribution for the cluster C1 and GEV, PE3 and GNO fitted for cluster C2 while for cluster C3; GLO and GEV were good fitted regional distribution. To select a robust distribution among good fitted distributions accuracy measures calculated using Monte Carlo simulations for each cluster. The simulation result showed that PE3 was the best choice for quantile estimation for cluster C1. For cluster C2, PE3 was the best choicefor a large return period and GEV was best for a small return period. For cluster C3, GEV was the most suitable distribution for quantile estimation. Using these robust distributions rainfall quantiles were estimated at each rain gauge station from 2 to 100 year return periods. These estimated rainfall quantiles may be rough guideline for planning and designing hydraulic structures by policy makers and structural engineers.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MAUSAM
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All articles published by MAUSAM are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone.
Anyone is free:
- To Share - to copy, distribute and transmit the work
- To Remix - to adapt the work.
Under the following conditions:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even
commercially.