Spatio-temporal variations of land surface temperature and precipitation due to climate change in the Jhelum river basin, India
DOI:
https://doi.org/10.54302/mausam.v71i4.54Keywords:
Statistical downscaling, Precipitation, Temperature, Spatio-temporal changesAbstract
The present study investigated the spatio-temporal variations of precipitation and temperature for the projected period (2011-2100) in the Jhelum basin, India. The precipitation and temperature variables are projected under RCP 8.5 scenario using statistical down scaling techniques such as Artificial Neural Network (ANN) and Wavelet Artificial Neural Network (WANN) models. Firstly, the screened predictors were downscaled to predictand using ANN and WANN models for all the study stations. On the basis of the performance criteria, the WANN model is selected as an efficient model for downscaling of precipitation and temperature. The future screened predictor data pertaining to RCP 8.5 of CanESM2 model were downscaled to monthly temperature and precipitation for future periods (2011-2100) using WANN models. The investigation of the future projections revealed an average increase of 17-25% in the mean annual precipitation and 20-25% average increase in the monthly mean precipitation for all the selected stations towards the end of 21st century. The monthly mean temperature also showed an increase of 2-3 °C for all the study stations towards the end of 21st century. The mean seasonal temperature of the projected period is found to be increasing for all the four seasons in most parts of the basin.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MAUSAM
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All articles published by MAUSAM are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone.
Anyone is free:
- To Share - to copy, distribute and transmit the work
- To Remix - to adapt the work.
Under the following conditions:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even
commercially.