Interaction among neighbouring rectangular finite strike slip faults in a linear viscoelastic half space representing lithosphere-asthenosphere system
DOI:
https://doi.org/10.54302/mausam.v71i4.59Keywords:
Linear viscoelastic lithosphere-asthenosphere system, Strike slip fault, Aseismic period, Stress accumulation, Interseismic stress, Earthquake predictionAbstract
There are seismically active regions consisting of fault system with a number of neighbouring earthquake faults. A movement across any one of them may affect the nature of stress accumulation near the others. Mathematical models may be developed to study these interactions and the pattern of interseismic stresses during the aseismic period in between two consecutive seismic events. In this paper, the lithosphere-asthenosphere system is being represented by a linear viscoelastic half space. The material of the half space is expected to possess the properties of both Maxwell and Kelvin type materials. It is assumed that the system is under a steady shear stress generated by some tectonic phenomena. For obtaining the solution for displacement, strain and stresses from the resulting boundary value problem, Integral transform, Green’s function techenique and correspondence principle have been used. Appropriate estimates of the model parameters were used in carrying out the numerical computations for investigating the nature of interactions among the faults.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MAUSAM
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All articles published by MAUSAM are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone.
Anyone is free:
- To Share - to copy, distribute and transmit the work
- To Remix - to adapt the work.
Under the following conditions:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even
commercially.