Regional analysis of maximum rainfall using L-moment and LH-moment: A comparative case study for the northeast India
DOI:
https://doi.org/10.54302/mausam.v68i3.677Keywords:
L-moment, LH-moments, Probability distribution, Rainfall frequency analysisAbstract
Rainfall data of the northeast region of India has been considered for selecting best fit model for rainfall frequency analysis. The methods of L-moment has been employed for estimation of parameters five probability distributions, namely Generalized extreme value (GEV), Generalized Logistic(GLO), Pearson type 3 (PE3), 3 parameter Log normal (LN3) and Generalized Pareto (GPA) distributions. The methods of LH-moment of four orders (L1 L2, L3 & L4-moments) have also been used for estimating the parameters of three probability distributions namely Generalized extreme value (GEV), Generalized Logistic (GLO) and Generalized Pareto (GPA) distributions. PE3 distribution has been selected as the best fitting distribution using L-moment, GPA distribution using L1-moment and GLO distribution using L2, L3 & L4-moments. Relative root mean square error (RRMSE) and RBIAS are employed to compare between the results found from L-moment and LH-moment analysis. It is found that GPA distribution designated by L1-moment method is the most suitable and the best fitting distribution for rainfall frequency analysis of the northeast India. Also the L1-moment method is significantly more efficient than L-moment and other orders of LH-moment for rainfall frequency analysis of the northeast India.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MAUSAM
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All articles published by MAUSAM are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone.
Anyone is free:
- To Share - to copy, distribute and transmit the work
- To Remix - to adapt the work.
Under the following conditions:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even
commercially.