Wavelets based estimation of trend in sub-divisional rainfall in India
DOI:
https://doi.org/10.54302/mausam.v71i1.7Keywords:
Haar filter, Long memory, Mann-Kendall test, Trend, WaveletsAbstract
Presence of long memory in climatic variables is frequently observed. The trend assessment becomes difficult in the presence of long-memory as the usual methods are not capable to take care of this property during trend estimation. In order to estimate the trend in presence of long memory, the non-parametric wavelet method has become popular in the recent time. The discrete wavelet transformation (DWT) re-expresses a time-series in terms of coefficients that are associated with a particular time and a particular scale. In the present study, DWT has been applied to estimate the monthly rainfall trend for the monsoon months: June-September in ten selected sub-divisions of India using “Haar” wavelet filter. The results from DWT were cross checked with the non-parametric Mann-Kendall (M-K) test. The investigation reveals that the monthly rainfall trend for the monsoon months of different sub-divisions in India are significantly decreasing over the years. However, in some of the sub-divisions, rainfall trend is increasing. DWT reveals significant trend in most of the sub-divisions whereas M-K test reveals that most of the trends are not significant at 5% level.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MAUSAM
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All articles published by MAUSAM are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone.
Anyone is free:
- To Share - to copy, distribute and transmit the work
- To Remix - to adapt the work.
Under the following conditions:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even
commercially.