Weather based forecast models for diseases in mustard crop

Authors

  • AMRENDER KUMAR Indian Agricultural Statistics Research Institute, Pusa, New Delhi, India
  • RANJANA AGRAWAL Indian Agricultural Statistics Research Institute, Pusa, New Delhi, India
  • C CHATTOPADHYAY Indian Institute of Pulses Research, Kanpur, India

DOI:

https://doi.org/10.54302/mausam.v64i4.749

Keywords:

Forecasting models, Alternaria blight, Powdery mildew, Artificial neural network, Multilayer perceptron, Radial basis function, weather indices

Abstract

iwoZ psrkouh  iz.kkfy;k¡ Qlyksa ij uk'kd thoksa@chekfj;ksa ds geys gksus dh iwoZ lwpuk iznku dj ldrh gSaA blls igys ds vf/kdka'k dkexkj uk'kd thoksa@ chekfj;ksa dh iwoZ psrkouh ds fy, lekJ;.k ekWMYl ¼jSf[kd vkSj vjSf[kd nksuksa½ dk mi;ksx djrs jgs gSaA budh mi;qDrrk dh O;kidrk ds dkj.k orZeku esa d`f=e raf=dh; latky ¼ANNs½ rduhd izpyu esa gS vkSj bl rduhd ds lqxe gksus ds dkj.k vLi"V vkSj nks"kiw.kZ vkadM+ksa ds gksus ij Hkh blls tfVy leL;kvksa dk bykt fd;k tk ldrk gSA bl i)fr dh [kkst ljlksa dh Qly esa gksus okyh vf/kdre xaHkhj chekfj;ksa ,YVjusfj;k CykbV vkSj ikmMjh feYM~;w dh iwoZ psrkouh nsus ds fy, dh xbZ gSA chekjh dh vkjafHkd voLFkk esa vkSj chekjh ds xaHkhj gks tkus dh voLFkk esa Qly ij buds izHkko vyx&vyx gksrs gSa tSlk fd iwokZuqekudŸkZvksa }kjk Hkjriqj] <ksyh vkSj csjgkeiqj uked rhu LFkkuksa ds ekSle rkfydkvksa }kjk crk;k x;k gS A bl 'kks/ki= esa nks izdkj ds raf=dh; latky lajpukvksa uker% eYVhysvj ijlsIVªkWu ¼MLP½ vkSj jsfMvy csfll QaD'ku ¼RBF½ dks fy;k x;k gS vkSj bldh rqyuk ekSle rkfydkvksa ij vk/kkfjr lekJ;.k ekWMy ls dh xbZ gS vkSj ik;k x;k gS fd MLP ds ifj.kke vkSlr fujis{k izfr'kr =qfV ¼MAPE½ ds vFkZ esa lcls vPNs jgs gSaA

 Forewarning systems can provide advance information for outbreak of pests / diseases attack. Most of the earlier workers have utilised regression models (both linear and non-linear) for pests / diseases forewarning. Artificial Neural Network (ANNs) techniques are in vogue due to their wide range of applicability and the ease with which they can treat complicated problems even if the data are imprecise and noisy. This methodology has been explored for forewarning Alternaria Blight and Powdery mildew in mustard for maximum disease severity, crop age at first appearance of disease and crop age at maximum disease severity as response variables and weather indices as predictors for three locations namely Bharatpur, Dholi and Berhampur. In this study, two types of neural network architectures namely Multilayer perceptron (MLP) and Radial basis function (RBF) were attempted and compared with weather indices based regression model and it has been found that a MLP performs best in terms of mean absolute percentage error (MAPE).

Downloads

Published

01-10-2013

How to Cite

[1]
A. . KUMAR, R. . . AGRAWAL, and C. CHATTOPADHYAY, “Weather based forecast models for diseases in mustard crop”, MAUSAM, vol. 64, no. 4, pp. 663–670, Oct. 2013.

Issue

Section

Research Papers

Most read articles by the same author(s)