Weather based forecast models for diseases in mustard crop
DOI:
https://doi.org/10.54302/mausam.v64i4.749Keywords:
Forecasting models, Alternaria blight, Powdery mildew, Artificial neural network, Multilayer perceptron, Radial basis function, weather indicesAbstract
iwoZ psrkouh iz.kkfy;k¡ Qlyksa ij uk'kd thoksa@chekfj;ksa ds geys gksus dh iwoZ lwpuk iznku dj ldrh gSaA blls igys ds vf/kdka'k dkexkj uk'kd thoksa@ chekfj;ksa dh iwoZ psrkouh ds fy, lekJ;.k ekWMYl ¼jSf[kd vkSj vjSf[kd nksuksa½ dk mi;ksx djrs jgs gSaA budh mi;qDrrk dh O;kidrk ds dkj.k orZeku esa d`f=e raf=dh; latky ¼ANNs½ rduhd izpyu esa gS vkSj bl rduhd ds lqxe gksus ds dkj.k vLi"V vkSj nks"kiw.kZ vkadM+ksa ds gksus ij Hkh blls tfVy leL;kvksa dk bykt fd;k tk ldrk gSA bl i)fr dh [kkst ljlksa dh Qly esa gksus okyh vf/kdre xaHkhj chekfj;ksa ,YVjusfj;k CykbV vkSj ikmMjh feYM~;w dh iwoZ psrkouh nsus ds fy, dh xbZ gSA chekjh dh vkjafHkd voLFkk esa vkSj chekjh ds xaHkhj gks tkus dh voLFkk esa Qly ij buds izHkko vyx&vyx gksrs gSa tSlk fd iwokZuqekudŸkZvksa }kjk Hkjriqj] <ksyh vkSj csjgkeiqj uked rhu LFkkuksa ds ekSle rkfydkvksa }kjk crk;k x;k gS A bl 'kks/ki= esa nks izdkj ds raf=dh; latky lajpukvksa uker% eYVhysvj ijlsIVªkWu ¼MLP½ vkSj jsfMvy csfll QaD'ku ¼RBF½ dks fy;k x;k gS vkSj bldh rqyuk ekSle rkfydkvksa ij vk/kkfjr lekJ;.k ekWMy ls dh xbZ gS vkSj ik;k x;k gS fd MLP ds ifj.kke vkSlr fujis{k izfr'kr =qfV ¼MAPE½ ds vFkZ esa lcls vPNs jgs gSaA
Forewarning systems can provide advance information for outbreak of pests / diseases attack. Most of the earlier workers have utilised regression models (both linear and non-linear) for pests / diseases forewarning. Artificial Neural Network (ANNs) techniques are in vogue due to their wide range of applicability and the ease with which they can treat complicated problems even if the data are imprecise and noisy. This methodology has been explored for forewarning Alternaria Blight and Powdery mildew in mustard for maximum disease severity, crop age at first appearance of disease and crop age at maximum disease severity as response variables and weather indices as predictors for three locations namely Bharatpur, Dholi and Berhampur. In this study, two types of neural network architectures namely Multilayer perceptron (MLP) and Radial basis function (RBF) were attempted and compared with weather indices based regression model and it has been found that a MLP performs best in terms of mean absolute percentage error (MAPE).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MAUSAM
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All articles published by MAUSAM are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone.
Anyone is free:
- To Share - to copy, distribute and transmit the work
- To Remix - to adapt the work.
Under the following conditions:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even
commercially.