Rainfall-runoff modeling using Doppler weather radar data for Adyar watershed, India
DOI:
https://doi.org/10.54302/mausam.v65i1.881Keywords:
Rain gauge, Radar rainfall, Z-R relationship, Rainfall-Runoff model, HEC-HMS modelAbstract
Precipitation is a significant input for hydrologic models; so, it needs to be quantified precisely. The measurement with rain gauges gives the rainfall at a particular location, whereas the radar obtains instantaneous snapshots of electromagnetic backscatter from rain volumes that are then converted into rainfall via algorithms. It has been proved that the radar measurement of areal rainfall can outperform rain gauge network measurements, especially in remote areas where rain gauges are sparse, and remotely sensed satellite rainfall data are too inaccurate. The research focuses on a technique to improve rainfall-runoff modeling based on radar derived rainfall data for Adyar watershed, Chennai, India. A hydrologic model called ‘Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS)’ is used for simulating rainfall-runoff processes. CARTOSAT 30 m DEM is used for watershed delineation using HEC-GeoHMS. The Adyar watershed is within 100 km radius circle from the Doppler Weather Radar station, hence it has been chosen as the study area. The cyclonic storm Jal event from 4-8 November, 2010 period is selected for the study. The data for this period are collected from the Statistical Department, and the Cyclone Detection Radar Centre, Chennai, India. The results show that the runoff is over predicted using calibrated Doppler radar data in comparison with the point rainfall from rain gauge stations.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MAUSAM
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All articles published by MAUSAM are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone.
Anyone is free:
- To Share - to copy, distribute and transmit the work
- To Remix - to adapt the work.
Under the following conditions:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even
commercially.